February 12, 2018

LIMITED PHASE II SUBSURFACE INVESTIGATION

Property Identification:

13400 Hanford Armona Road Hanford, California 93230

AEI Project No. 383288

Prepared for:

Mr. Rhodlee Braa Old Dominion Capital 7522 North Colonial Avenue Fresno, California 93711

And

Cathay Bank 9650 Flair Drive, 6th Floor El Monte, California 91731

And

U.S. Small Business Administration

Prepared by:

AEI Consultants 2207 West 190th Street Torrance, California 90504 (310) 798-4255 Environmental Due Diligence

Building Assessments

Site Investigation & Remediation

Energy Performance & Benchmarking

Industrial Hygiene

Construction Risk Management

Zoning Analysis Reports & ALTA Surveys

National Presence

Regional Focus

Local Solutions

TABLE OF CONTENTS

1.0 \$11	E DESCRIPTION
2.0 BAC	CKGROUND1
3.0 INV	/ESTIGATION EFFORTS
3.1 Healt	th and Safety Plan
	physical Survey
3.5 Soil (ng and Soil Sample Collection
	ng Destruction
	stigation Derived Wastes
4.0 FIN	DINGS
	ogy and Hydrogeology5
4.2 Soil 9	Sample Analytical Results
	MMARY AND CONCLUSIONS
6.0 REP	PORT LIMITATIONS AND RELIANCE7
	FIGURES
Figure 1 Figure 2	Site Location Map Site Map
	TABLES
Table 1	Soil Sample Data Summary
Table 2	Soil Gas Sample Data Summary
	APPENDICES
Appendix Appendix	

February 12, 2018

Mr. Rhodlee Braa Old Dominion Capital 7522 North Colonial Avenue Fresno, California 93711

Subject: Limited Phase II Subsurface Investigation

13400 Hanford Armona Road Hanford, California 93230 AEI Project No. 383288

AEI Consultants (AEI) is pleased to provide this report which describes the activities and results of the Limited Phase II Subsurface Investigation (Phase II) performed at the above referenced Site (Figures 1 and 2). This investigation was completed in general accordance with the authorized scope of services outlined in our authorized proposal number 56106.

1.0 SITE DESCRIPTION

The Site consists of a single-story manufacturing/distribution warehouse occupied by Ted Martin Welding Shop, M.V. Transportation, Woodside Electronics, and Layne Pump Company with associated south adjacent parking lot on the north side of Hanford Armona Road in an industrial area of Hanford, California (Figure 2). The Site is relatively flat and sits at an elevation of approximately 238 feet above mean sea level. The regional topographic gradient direction slopes toward the southeast and, therefore, the direction of groundwater flow beneath the Site is inferred to be to the southeast. The Last Chance Ditch water way is located approximately 0.33 mile to the northeast.

According to the City of Hanford Public Works department website, the City of Hanford domestic water system is a groundwater system. Water is pumped from wells ranging in depths from 600 to 1,700 feet below ground surface (bgs). Excess water runoff from the Kings River helps replenish the basin's groundwater.

According to the First Quarter 2017 Quarterly Monitoring Report for 12778 Hanford Armona Road, located approximately 165 feet southwest of the Site, first groundwater is estimated to be at a depth ranging from 33 to 35 feet bgs.

2.0 BACKGROUND

AEI reviewed a Phase I Environmental Site Assessment (ESA) performed by Encon Solutions, Inc. (ESI) as detailed in a report dated January 2, 2018. As detailed in the Phase I ESA, industrial operations have been associated with the Site from at least 1967 to present.

Limited Phase II Subsurface Investigation

13400 Hanford Armona Road, Hanford, California 93230

An on-site septic system was believed to be installed sometime between 1967 and 1977. In 1977, the septic system was reportedly repaired, but detailed nature and cause of the repair is unknown. The septic system in conjunction with a long period of industrial manufacturing and automotive repair operations may pose a potential environmental concern.

Former rail tracks and access were believed to be located on the north end of the Site. The rail road spur was removed. Spurs are known to pose an inherent risk to adversely impact subsurface environments. Based on a review of ESI's Phase I ESA, ESI could not rule out the possibility that the former railroad spur at the northern border of the Site was used in the delivery and handling of hazardous materials. Railroad spurs often represent environmental concerns due to the historic application of oil containing polychlorinated biphenyls (PCBs), herbicides, and arsenic for pest and weed control. This is identified as a recognized environmental concern (REC).

Industrial manufacturing operations such as electronic sorters and harvesters, water well drilling company, machining, aluminum parts manufacturing, milling and tubing manufacturing, as well as automotive repair and service business operations can pose environmental risks. Used oil, parts cleaning solvents, thinners, lacquers, brake fluids, automotive coolant, car batteries and other petroleum/chemical substances are suspected to have been used. The absence of detailed information about the industrial operations at the Site is identified as a REC.

Based on the historic industrial manufacturing operations, the potential exists that subsurface of the Site has been adversely impacted. As such, AEI recommended the performance of a Phase II in order to determine if the Site has been adversely impacted by the former industrial operations.

3.0 INVESTIGATION EFFORTS

AEI was requested to perform a limited subsurface investigation, including the collection of soil and soil gas samples, to evaluate if the subsurface has been significantly impacted by the historic industrial operations at the Site.

This work was performed under the oversight of a California licensed Professional Geologist.

3.1 Health and Safety Plan

A site-specific health and safety plan was prepared, reviewed by onsite personnel, and kept onsite for the duration of the fieldwork.

3.2 Permitting and Utility Clearance

Drilling permits were not required for this investigation. The public underground utility locating service DigAlert was notified to identify public utilities in the work area. Private utility locating was conducted by Ground Penetrating Radar Systems, Inc. (GPRS) of Los Angeles, California to identify underground utilities on the Site.

3.3 Geophysical Survey

On January 30, 2018, a geophysical survey was conducted by GPRS. The purpose of the survey was to evaluate the planned boring locations for subsurface anomalies and utilities. The

13400 Hanford Armona Road, Hanford, California 93230

geophysical survey was conducted using a magnetometer and ground penetrating radar. The results from the geophysical survey indicated that there were no obstructions in the selected boring locations.

The client should be aware of the inherent limitations of geophysical surveying methods and that above and underground utilities and other man-made or natural features (i.e. automobiles, debris piles, tree roots, reinforced concrete, certain soil conditions, etc.), if in the area of the survey, may decrease the effectiveness of the survey. The client should be aware that the lack of a detection of a feature from a geophysical survey does not mean that the feature does not exist only that it was not detected.

3.4 Drilling and Soil Sample Collection

On January 30, 2018, seven (7) soil borings (B-1 through B-7) were advanced on the Site (Figure 2). The borings were advanced by AEI using a hand-held rotary hammer with direct-push capability. The borings were advanced to depths of 5 feet below ground surface (bgs). Borings were attempted to be advanced to terminal depth of 10 feet bgs. However, after several attempts in each boring location refusal was met repeatedly at a depth of 5 feet bgs. The locations of each boring are listed below:

- Boring B-1 was advanced in the interior of eastern suite of the Site building.
- Boring B-2 was advanced south of the Site building, near the septic system.
- Boring B-3 was near the etched concrete in the Site building.
- Boring B-4 was advanced north of B-3, near the stained concrete.
- Boring B-5 was advanced north of the Site building, near the railroad track.
- Boring B-6 was advanced near the oil storage area on the western portion of the Site.
- Boring B-7 was advanced near Hanford Armona Road, southern boring on the Site.

The borings were advanced using 1.5-inch outer diameter rods and samples were collected by advancing the rods with acetate sample liners in approximately 5-foot intervals. After each interval, the core was retrieved, core barrel disassembled, and the sample liner was removed and transferred to the onsite geologist.

The soil borings were logged using the Unified Soil Classification System. A photo ionization detector (PID) was used to screen soil samples in the field and the PID readings for each sample were included on the boring logs (Appendix A). Selected soil samples were collected and sealed in 4-ounce glass jars.

Down-hole equipment was decontaminated using a triple rinse system containing detergent.

3.5 Soil Gas Sample Collection

On January 30, 2018, soil gas sampling was conducted on the Site. Soil gas probes were installed at 5 feet bgs in the three interior borings (B-1, B-3, and B-4) on Site. Each soil gas probe consisted of 1/4th-inch inner diameter Teflon® sampling tubing, with a 0.5-foot section of screen that was placed at the targeted depth of 5 feet bgs. Approximately one foot of sand was placed at the terminus of the soil gas probes, and approximately one foot of dry granular bentonite was placed on top of the sand pack. Hydrated bentonite was used to backfill the remaining borehole space

13400 Hanford Armona Road, Hanford, California 93230

to ground surface to prevent ambient air intrusion. The tubing end of each probe was sealed with a stainless-steel compression cap at ground surface.

The subsurface was allowed a minimum of 2 hours to equilibrate before the soil gas probes were sampled. Soil gas samples were collected in laboratory provided, batch certified 1.4-Liter passivated canisters by AEI personnel in general accordance with the July 2015, DTSC and the Los Angeles RWQCB, "Advisory – Active Soil Gas Investigations."

A shut-in test was performed to test the integrity of the sample train by closing the valve closest to the gas probe, opening the purge valve, and using a clean syringe to draw a vacuum. Once a vacuum of approximately 5 inches of mercury was achieved, the open valve was closed and allowed to sit for a minimum of 1 minute. If a drop-in vacuum was observed, fittings were tightened, and the test was performed again. Following the successful completion of the shut-in test, a leak check was performed by applying a leak check compound (Isopropanol) to the sampling connections. A total of 3 volumes of air were purged from each probe and a sample was collected using a laboratory-supplied regulator set at 200 milliliters per minute.

3.6 Boring Destruction

Following completion of sample collection and removal of tooling, the borings were backfilled with hydrated granular bentonite and completed at the surface with concrete and native soils to match the surrounding conditions.

3.7 Laboratory Analyses

On January 30, 2018, soil samples from the seven (7) borings were collected, labeled and placed into a cooler with ice following sampling. Soil gas samples from the three (3) interior borings were collected, labeled and stored. The samples were transferred under appropriate chain-of-custody documentation to Eurofins/CalScience of Garden Grove, California. Laboratory analytical documentation is provided in Appendix B.

Laboratory analysis of seven (7) soil samples consisted of the following:

- Total Petroleum Hydrocarbons (TPH-cc) by United States (U.S.) Environmental Protection Agency (EPA) Method 8015M
- Volatile Organic Compounds (VOCs) by U.S. EPA Method 8260B

Laboratory analysis of one (1) soil sample (B-5) consisted of the following:

- PCBs by U.S. EPA Method 8082
- Semi-Volatile Organic Compounds (SVOCs) by U.S. EPA Method 8270C
- Herbicides by U.S. EPA Method 8151
- Arsenic by U.S. EPA Method 6010B

Laboratory analysis of three (3) soil gas samples consisted of the following:

VOCs by U.S. EPA Method TO-15

3.8 Investigation Derived Wastes

No investigation derived waste was created during this investigation.

4.0 FINDINGS

The analytical results for TPH-cc, VOCs, PCBs, SVOCs and herbicides in soil and VOCs in soil gas were reviewed and compared to the Environmental Screening Levels (ESLs) published by the San Francisco Bay Regional Water Quality Control Board (RWQCB) and updated as of February 2016. The ESLs are conservative screening levels for over one hundred chemicals and enable the evaluation of the impact of these chemicals in soil, groundwater, soil gas and indoor air. They are intended to help expedite the identification and evaluation of potential environmental concerns at impacted sites.

The soil result for arsenic from this investigation was reviewed and compared to the background concentrations of metals that naturally exists in California soils. A study entitled Background Concentrations of Trace and Major Elements in California Soils, dated March 1996, by the Kearney Foundation of Soil Science was reviewed for information on the concentrations of background metals in California soils. The Kearny report is a relevant source used by public policy makers and those in the private sector concerned with environmental remediation and land use planning.

4.1 Geology and Hydrogeology

Sediment encountered in each of the borings generally consisted of slightly dense to dense silty sands interbedded with fine gravels and underlaid by dense clayey sands (Appendix A).

Groundwater was not encountered in borings B-1 through B-7 and was not part of the investigation.

4.2 Soil Sample Analytical Results

The following information is a summary of the soil sample analytical test results (Appendix B). This information has also been included in Table 1.

- Dimethyl phthalate was detected in the soil sample from boring B-5 at a concentration of 0.62 mg/kg, which slightly exceeds the comparison value of 0.035 mg/kg.
- Arsenic was detected in the soil sample from boring B-5 below its respective comparison value.
- TPH-o was detected in the sample from boring B-5 at a concentration below the respective comparison value.
- VOCs, PCBs, and herbicides were not detected in the soil samples submitted for analysis.

4.3 Soil Gas Sample Analytical Results

The following information is a summary of the soil gas sample analytical test results (Appendix B). This information has also been included in Table 2.

 VOCs, including Tetrachloroethylene (PCE), were detected in the soil gas samples collected. However, the detected concentrations were below their respective comparison values.

Limited Phase II Subsurface Investigation

13400 Hanford Armona Road, Hanford, California 93230

The leak check compound Isopropanol was detected but was not above 10 times the reporting limit for the target analyte (Isopropanol) which would indicate that corrective action is necessary (DTSC April 2012).

5.0 SUMMARY AND CONCLUSIONS

AEI has completed a Limited Phase II at the Site. The purpose of the Limited Phase II at the Site was to evaluate potential impacts from historic and current conditions related to industrial operations on the Site. A total of seven (7) borings were advanced at the Site for the collection of soil samples and a total of three (3) soil gas samples were collected.

The soil samples submitted for analysis as part of this investigation were analyzed for TPH-cc, VOCs, PCBs, and herbicides. Detected concentrations of these constituents were below their respective comparison levels.

Dimethyl phthalate was detected in the soil sample submitted from boring B-5 at a concentration of 0.62 mg/kg, which slightly exceeds the ESL comparison level of 0.035 mg/kg. According to the City of Hanford Public Works website, the drinking water source near the Site ranges from depths of 600 to 1,700 feet bgs. It is highly unlikely for this detected compound to migrate to the drinking water source. The nearest surface water is a channelized waterway 0.33 mile to the northeast. This waterway is part of the Last Chance Ditch, is only periodically flowing, and occasionally dry. Therefore, the pathway from the detection to the nearest surface water is also incomplete. In addition, the pathway to the surface from the 5-foot depth of this detection is incomplete due to the area being covered with asphalt, and therefore poses no risk to onsite workers.

Based on these results, AEI has determined there is no direct exposure risk from this exceedance and recommends no further action.

6.0 REPORT LIMITATIONS AND RELIANCE

This report presents a summary of work completed by AEI Consultants. The completed work includes observations and descriptions of site conditions encountered. Where appropriate, it includes analytical results for samples taken during the work. The number and location of samples are chosen to provide the requested information, subject to scope of work for which AEI was retained and limitations inherent in this type of work, but it cannot be assumed that they are representative of areas not sampled. This report should not be regarded as a guarantee that no further contamination beyond that which could have been detected within the scope of this investigation is present beneath the Site. Undocumented, unauthorized releases of hazardous material, the remains of which are not readily identifiable by visual inspection and are of different chemical constituents, are difficult and often impossible to detect within the scope of a chemical specific investigation.

Any conclusions and/or recommendations are based on these analyses and observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document. These services were performed in accordance with generally accepted practices, in the environmental engineering and construction field, which existed at the time and location of the work. No other warranty, either expressed or implied, has been made.

This investigation was prepared for the sole use and benefit of Mr. Rhodlee Braa/Old Dominion Capital, Cathay Bank, and the U.S. Small Business Administration. All reports, both verbal and written, whether in draft or final, are for the benefit of Mr. Rhodlee Braa/Old Dominion Capital, Cathay Bank, and the U.S. Small Business Administration. This report has no other purpose and may not be relied upon by any other person or entity without the written consent of AEI. Either verbally or in writing, third parties may come into possession of this report or all or part of the information generated as a result of this work. In the absence of a written agreement with AEI granting such rights, no third parties shall have rights of recourse or recovery whatsoever under any course of action against AEI, its officers, employees, vendors, successors or assigns. Reliance is provided in accordance with AEI's Proposal and Standard Terms & Conditions executed by Mr. Rhodlee Braa/Old Dominion Capital. The limitation of liability defined in the Terms and Conditions is the aggregate limit of AEI's liability to the client and all relying parties.

If there are any questions regarding our investigation, please do not hesitate to contact AEI at (310) 798-4255.

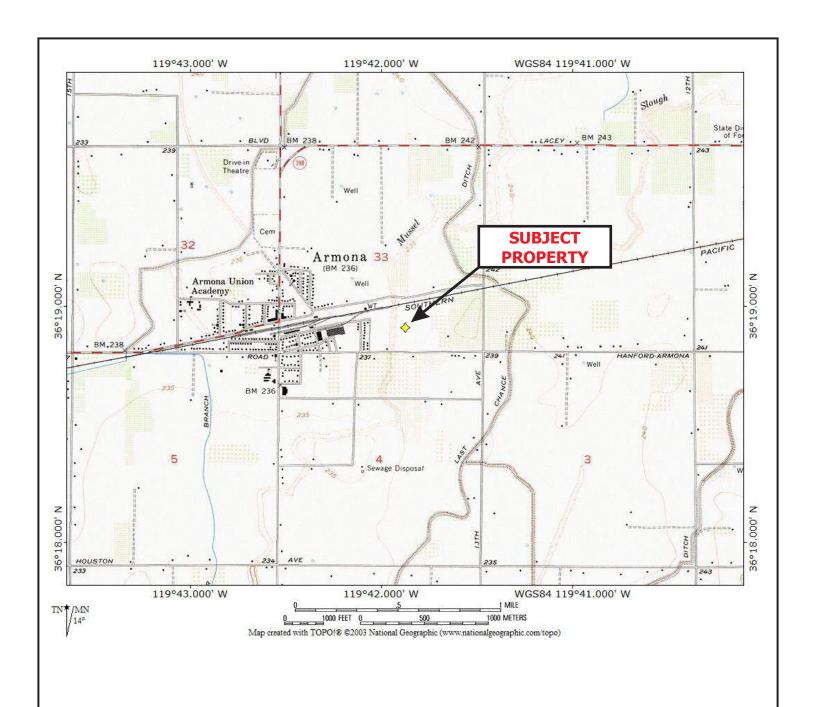
Sincerely,

AEI Consultants

Dashiell Geyer Project Manager AEI Consultants

2207 West 190th Street Torrance, California 90504

Fax: 310-846-5594


Kent Vollmer, PG, CEG Department Manager

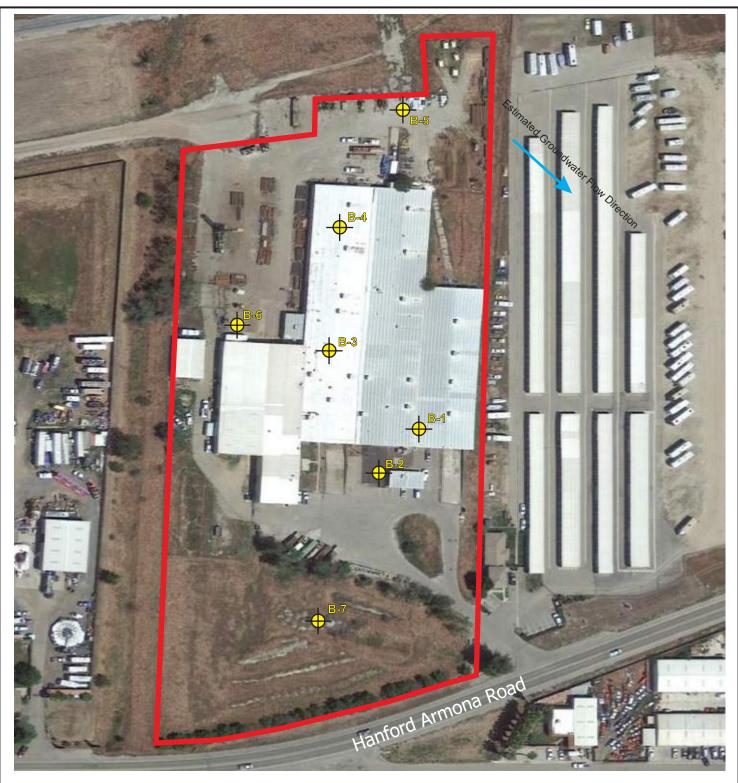
Va & Valle

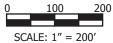
FIGURES

LEGEND

N

AEI Consultants


2207 West 190th Street, Los Angeles, California 90504


SITE LOCATION MAP

13400 Hanford Armona Road Hanford, California 93230 FIGURE 1 Project No. 383288

Map: Hanford, California

Date: 1954 Source: USGS

LEGEND

Approximate Property Boundary

Approximate Sampling Locations

AEI Consultants

2207 West 190th Street, Torrance, California 90504

SITE MAP

13400 Hanford Armona Rd. Hanford, CA 93230

FIGURE 2 Project No. 383288

TABLES

TABLE 1: SOIL SAMPLE DATA SUMMARY 13400 Hanford Armona Road, Hanford, California 93230 AEI Project No. 383288

			U.S. E	EPA Method 8	015M			<u> </u>	U.S. EPA Me					U.S. EPA Method 8082	U.S. EPA Method 8151	U.S. EPA Method 6010B/7471A	U.S. EPA Method 8270C
Location ID	Date	Depth	TPH-g	TPH-d	TPH-o	Tetrachloro ethylene (PCE)	Trichloro- ethylene (TCE)	Benzene	Toluene	Ethyl- benzene	o- Xylenes	m/p- Xylenes	All Other VOCs	PCBs	Herbicides	Arsenic	Dimethyl Phthalate
		(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
B-1	1/30/2018	5	ND<15	ND<15	ND<15	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	<mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	NA	NA	NA	NA
B-2	1/30/2018	5	ND<15	ND<15	ND<15	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	<mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	NA	NA	NA	NA
B-3	1/30/2018	5	ND<15	ND<15	ND<15	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	<mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	NA	NA	NA	NA
B-4	1/30/2018	5	ND<15	ND<15	ND<15	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	<mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	NA	NA	NA	NA
B-5	1/30/2018	5	ND<15	ND<15	17	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.07</td><td>0.62</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2.07</td><td>0.62</td></mdl<></td></mdl<>	<mdl< td=""><td>2.07</td><td>0.62</td></mdl<>	2.07	0.62
B-6	1/30/2018	5	ND<15	ND<15	ND<15	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	<mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	NA	NA	NA	NA
B-7	1/30/2018	1	ND<15	ND<15	ND<15	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	<mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	NA	NA	NA	NA
Comparison Val California Enviro (ESLs) San Frar Quality Control	onmental Scre nsisco Bay Reg	ening Levels Jional Water	100	230	5,100	0.42	0.46	0.044	2.9	1.4	2.	.3	Varies	Varies	Varies		0.035
Comparison Val Maximum Back mg/kg*																11	

Notes:

Analyses performed by Eurofins/CalScience, Garden Grove, California

mg/kg

Milligrams per kilogram

Not detected above the method detection limit (MDL) ND<

bgs below ground surface

Volatile Organic Compounds VOCs

Result exceeds applicable Comparison Value Bold

Estimated value above laboratory method detection limit, but below the limit for reporting

NA Not Analyzed

From kearney Foundation of Soil Science 1996 Report "Background Concentrations of Trace and Major Elements in California Soils"

Environmental Protection Agency EPA Comparison Value not Applicable

Total Petroleum Hydrocarbons as gasoline TPH-g Total Petroleum Hydrocarbons as diesel TPH-d Total Petroleum Hydrocarbons as oil TPH-o

TABLE 2: SOIL GAS SAMPLE DATA SUMMARY 13400 Hanford Armona Road, Hanford, California 93230 AEI Project No. 383288

U.S. EPA Method TO-15

Location ID	Date	Depth (feet bgs)	Tetrachloro- ethylene (PCE) (µg/m³)	Benzene (μg/m³)	Toluene (μg/m³)	Ethyl- benzene (µg/m³)	o-Xylene (μg/m³)	p/m-Xylene (μg/m³)	Acetone (μg/m³)	2-Butanone (MEK) (μg/m³)	Chloroform (μg/m³)	Carbon Disulfide (µg/m³)	1,4- Dichloro- benzene (µg/m³)	4-Ethyl- toluene (μg/m³)	I sopropanol (μg/m³)	4-Methyl-2- Pentanone (μg/m³)	1,2,4- Trimethyl- benzene (µg/m³)	1,3,5- Trimethyl- benzene (µg/m³)	All Other VOCs (μg/m³)
B-1	1/30/2018	5	ND<3.4	26	130	21	20	72	150	24	ND<2.4	66	55	6.4	29	27	18	7.1	<mrl< td=""></mrl<>
B-3	1/30/2018	5	35	2.0	3.4	ND<2.2	ND<2.2	ND<8.7	79	16	ND<2.4	14	4.5	ND<2.5	15	16	ND<7.4	ND<2.5	<mrl< td=""></mrl<>
B-4	1/30/2018	5	8.8	ND<1.6	2.4	ND<2.2	ND<2.2	ND<8.7	59	9.7	3.6	14	ND<3.0	ND<2.5	ND<12	ND<6.1	ND<7.4	ND<2.5	<mrl< td=""></mrl<>
California Envi	dustrial Soil Ga onmental Screensisco Bay Reg	ening Levels ional Water	2,100	420	1,300,000	4,900	44	0,000	140,000,000	22,000,000	530		1,100						Varies

Notes:

Analysis performed by Eurofins/CalScience, Garden Grove, CA Micrograms per cubic meter

μg/m³

Micrograms per cubic meter

Less than the method reporting limit

ND< Not detected above method reporting limit (MRL)

bgs below ground surface

-- Comparison value not applicable

VOCs Volatile Organic Compounds

EPA Environmental Protection Agency

J Estimated value above the laboratory method detection limit, but below the limit for reporting

Result exceeds a Comparison Value

APPENDIX A

Boring Logs

BORING NUMBER B-1 PAGE 1 OF 1

	Consult	tants					TAGETOLI			
	ental & Engineering									
	T Old Domir									
	ECT NUMBER									
						GROUND ELEVATION	HOLE SIZE 1.5 inches			
				tants, Ind	D					
	ING METHOD			CUECK	VED DV - March Vallers are	AT TIME OF DRILLING N/A				
					KED BY Kent Vollmer					
NOTE		ning, south	eastern	partort	he main building	AFTER DRILLING N/A				
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS	PID DATA (ppm)	GRAPHIC LOG	I	MATERIAL DESCRIPTION	COMPLETION			
				0.	0.0'- 0.4': Concrete					
 	B-1-1		0		(SM) 0.4' - 5: SILTY medium, loose, dry.	SAND, light olive brown (2.5YR, 5/4), fine to				
3 4	B-1-2.5		2.1		(SM) SILTY SAND, slightly dense, dry	light olive brown (2.5YR, 5/4), fine to medium				
	B-1-5		6.7		(SM) SILTY SAND, lig dense, dry	ght olive brown (2.5YR, 5/4), fine to medium,				

AEI BORING - GINT STD US LAB,GDT - 2/2/18 16:12 - P\COMPANYWIDE PROJECTS\3832000 SERIES\383288 HANFORD, CAPHIIBORING LOGS\383288 BORING LOGS\GPJ

BORING NUMBER B-2 PAGE 1 OF 1

	AEI Consultants
Faulton and at 10	Cardanavian Cardan

CLIEN' PROJE DATE DRILLI DRILLI	ING CONTRA	nion Capital R 383288 1/30/18 ACTOR AE D Roto-Har	I Consul	COM Itants,	PLETED 1/30/18	PROJECT LOCATION 13400 Hanford Armona Rd., Hanford, CA 93230 GROUND ELEVATION HOLE SIZE 1.5 inches GROUND WATER LEVELS: AT TIME OF DRILLING N/A				
NOTES	Exterior bo	oring, near th	ne septic	syster	n	AFTER DRILLING N/A				
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS	PID DATA (ppm)	GRAPHIC LOG	МА	TERIAL DESCRIPTION	COMPLETION			
					0.0' - 0.2': Native soil w 0.2	ith vegetation				
	B-2-1		0		(SM) 0.2' - 5.0': SILTY medium, slightly dense	SAND, dark olive brown (2.5YR, 3/3), fine to damp, trace subrounded gravel.				
 	B-2-2.5		1.6		(SM) SILTY SAND, dar dense, damp, trace sub	k olive brown (2.5YR, 3/3), fine to medium, rounded gravel.				
_ 3 _										
4										
 	B-2-5		6.8		(SM) SILTY SAND, da dense, damp.	rk olive brown (2.5YR, 3/3), fine to medium,				

BORING NUMBER B-3 PAGE 1 OF 1

	AEI Consultants
Equipmental 8	Engineering Candear

PROJECT NUMBER DATE STARTED _ DRILLING CONTRA DRILLING METHOR LOGGED BY _Das	nion Capital R 383288 1/30/18 ACTOR AEI Co D Roto-Hamme	COMPI consultants, Indeed	C. KED BY Kent Vollmer	PROJECT LOCATION 13400 Hanford Armona Rd., Hanford, CA 93230 GROUND ELEVATION HOLE SIZE 1.5 inches GROUND WATER LEVELS: AT TIME OF DRILLING N/A AT END OF DRILLING N/A			
			e etched concrete	AFTER DRILLING N/A			
O DEPTH (ft) (A) SAMPLE TYPE NUMBER	BLOW	PID DATA (ppm) GRAPHIC LOG	М	IATERIAL DESCRIPTION	COMPLETION		
		0.		SAND, light olive brown (2.5YR, 5/4), fine to			
B-3-1 1 B-3-1		2.1	medium, loose, dry.				
B-3-2.5	2	2.6	(SM) SILTY SAND, lig dense, dry	ght olive brown (2.5YR, 5/4), fine to medium,			
4 B-3-5	5	5.8	(SM) SILTY SAND, lig dense, dry	ht olive brown (2.5YR, 5/4), fine to medium,			

IUMBER B-4

PAGE 1 OF 1

AEI	BORING NUI
Environmental & Engineering Services	
CLIENT Old Dominion Capital	PROJECT NAME Limited Phase II Subsurface Investigation
PROJECT NUMBER 383288	PROJECT LOCATION 13400 Hanford Armona Rd., Hanford
DATE STARTED 1/30/18 COMPLETED 1/30/18	GROUND ELEVATION HOLE SIZE 1.5
DRILLING CONTRACTOR AEI Consultants, Inc.	GROUND WATER LEVELS:
DDILLING METHOD Poto Hommor	AT TIME OF DOILLING NI/A

nford, CA 93230 1.5 inches DRILLING METHOD Roto-Hammer AT TIME OF DRILLING _--- N/A CHECKED BY Kent Vollmer AT END OF DRILLING _--- N/A LOGGED BY Dashiell Geyer NOTES Interior boring, near the stained concrete AFTER DRILLING _--- N/A SAMPLE TYPE NUMBER PID DATA (ppm) GRAPHIC LOG BLOW DEPTH (ft) MATERIAL DESCRIPTION COMPLETION 0 AEI BORING - GINT STD US LAB.GDT - 2/2/18 16:12 - PY.COMPANYWIDE PROJECTS\3832000 SERIES\383288 HANFORD, CAIPHI\BORING LOGS\383288 BORING LOGS.GPJ 0.0'- 0.4': Concrete 0.4 (SM) 0.4' - 5: SILTY SAND, light olive brown (2.5YR, 5/4), fine to B-4-1 1.2 medium, loose, dry. (SM) SILTY SAND, light olive brown (2.5YR, 5/4), fine to 3.6 B-4-2.5 medium, slightly dense, dry. 3 (SM) SILTY SAND, light olive brown (2.5YR, 5/4), fine to medium, dense, dry. B-4-5 4.1

BORING NUMBER B-5

	AL				ים	PAGE 1 OF 1				
Environm	Consult ental & Engineering									
CLIEN	IT Old Domir	nion Capital			PROJECT NAME Limited Phase II Subs	urface Investigation				
	ECT NUMBER					PROJECT LOCATION 13400 Hanford Armona Rd., Hanford, CA 93230				
DATE	STARTED _	1/30/18		COM	PLETED _1/30/18 GROUND ELEVATION	HOLE SIZE 1.5 inches				
1				Itants, I	nc. GROUND WATER LEVELS:					
1	ING METHOD				AT TIME OF DRILLING N/A					
					KED BY Kent Vollmer AT END OF DRILLING N/A					
NOTE	S Northern b	oring, near		ad trad	<u>AFTER DRILLING N/A</u>					
о DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW	PID DATA (ppm)	GRAPHIC LOG	MATERIAL DESCRIPTION	COMPLETION				
					0.0' - 0.3': Asphalt 0.3					
	\									
 1	B-5-1		0		(SP) 0.3' - 3.5': Sand with silt, light brownish grey (2.5YR, 6/2), fir loose, dry, trace subrounded and subangular gravel, trace clay.	ne,				
2										
 	B-5-2.5		1.3		(SP) Sand with silt, light brownish grey (2.5YR, 6/2), fine, loose, of trace subrounded and subangular gravel, trace clay.	ry,				
_ 3										
 					3.5					
4										
-										
	B-5-5		3.2		(SC) 3.5' - 5.0': CLAYEY SAND, light brownish grey (2.5YR, 6/2), fine, dense, slightly damp, trace subrounded gravel.					

BORING NUMBER B-6

CLIEN PROJE DATE		Services nion Capital R 383288 1/30/18		СОМ	PROJECT LOCATION 13400 Hanford Armo	PROJECT LOCATION _13400 Hanford Armona Rd., Hanford, CA 93230 GROUND ELEVATION HOLE SIZE _1.5 inches			
	ING METHOD				AT TIME OF DRILLING N/A				
LOGG	ED BY Dash	niell Geyer		CHE	KED BY Kent Vollmer AT END OF DRILLING N/A				
NOTES	S Western b	oring, near	the oil st	torage a	rea AFTER DRILLING N/A				
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW	PID DATA (ppm)	GRAPHIC LOG	MATERIAL DESCRIPTION	COMPLETION			
					0.0' - 0.2': Gravelly Sand 0.2				
 1	B-6-1		0		(SP) 0.2' - 3.5': Sand with silt, light brownish grey (2.5YR, 6/2), fine, loose, dry, trace subrounded and subangular gravel, trace clay.				
 2	B-6-2.5		6.2		(SP) Sand with silt, light brownish grey (2.5YR, 6/2), fine, loose, dry, trace subrounded and subangular gravel, trace clay.				
3	/ \				3.5				
4									
 5	B-6-5		9.5		(SC) 3.5' - 5.0': CLAYEY SAND, light brownish grey (2.5YR, 6/2), fine, dense, slightly damp, trace subrounded gravel.				

BORING NUMBER B-7 PAGE 1 OF 1

Environmental & Engineering Service	-			
CLIENT Old Dominion			PROJECT NAME Limited Phase II Subsurfa	ice Investigation
PROJECT NUMBER 38			PROJECT LOCATION 13400 Hanford Armo	
		COMP	LETED _1/30/18 GROUND ELEVATION H	
				OLE SIZE 1.5 IIICIES
		tants, in	GROUND WATER LEVELS:	
DRILLING METHOD R			AT TIME OF DRILLING N/A	
LOGGED BY Dashiell (KED BY Kent Vollmer AT END OF DRILLING N/A	
NOTES Southern borin	g on the propert	y, near I	Hanford Armona Road AFTER DRILLING N/A	
O DEPTH (ft) (ft) SAMPLE TYPE NUMBER	COUNTS COUNTS	GRAPHIC LOG	MATERIAL DESCRIPTION	COMPLETION
_		.	0.0' - 0.3': Native soil with vegetation	
B-7-1 B-7-1 B-7-1 B-7-1 1 B-7-2.5	0		(SW) 0.3' - 5.0': SAND, light yellowish brown (2.5YR, 6/4), fine to medium, slightly dense, dry, trace subrounded gravel. (SW) SAND, light yellowish brown (2.5YR, 6/4), fine to coarse, slightly dense, dry, trace subrounded gravel.	
B-7-5	0		(SW) SAND, light yellowish brown (2.5YR, 6/4), fine to coarse, slightly dense, dry, trace subrounded gravel.	

APPENDIX B Laboratory Analytical Reports

Calscience

WORK ORDER NUMBER: 18-01-2135

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AEI Consultants

Client Project Name: 383288

Attention: Kent Vollmer

2207 West 190th Street Torrance, CA 90504-6001

ResultLink >

Email your PM >

Approved for release on 02/05/2018 by:

Lori Thompson Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: 383288 Work Order Number: 18-01-2135

1	Work Order Narrative	3
2	Sample Summary	4
3	Client Sample Data. 3.1 EPA 8015B (M) Extended Range (Solid). 3.2 EPA 6010B ICP Metals (Solid). 3.3 EPA 8082 PCB Aroclors (Solid). 3.4 EPA 8151A Chlorinated Herbicides (Solid). 3.5 EPA 8270C Semi-Volatile Organics (Solid). 3.6 EPA 8260B Volatile Organics (Solid).	5 8 9 10 11
4	Quality Control Sample Data. 4.1 MS/MSD. 4.2 PDS/PDSD. 4.3 LCS/LCSD.	33 33 38 39
5	Sample Analysis Summary	45
6	Glossary of Terms and Qualifiers	46
7	Chain-of-Custody/Sample Receipt Form	47

Work Order Narrative

Work Order: 18-01-2135 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 01/31/18. They were assigned to Work Order 18-01-2135.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

 Client:
 AEI Consultants
 Work Order:
 18-01-2135

 2207 West 190th Street
 Project Name:
 383288

Torrance, CA 90504-6001 PO Number: 152277
Date/Time 01/31/18 12:22

Received:

Number of 21 Containers:

Attn: Kent Vollmer

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
B-1-1	18-01-2135-1	01/30/18 09:48	1	Solid
B-1-2.5	18-01-2135-2	01/30/18 09:50	1	Solid
B-1-5	18-01-2135-3	01/30/18 10:10	1	Solid
B-2-1	18-01-2135-4	01/30/18 10:23	1	Solid
B-2-2.5	18-01-2135-5	01/30/18 10:28	1	Solid
B-2-5	18-01-2135-6	01/30/18 10:35	1	Solid
B-3-1	18-01-2135-7	01/30/18 11:00	1	Solid
B-3-2.5	18-01-2135-8	01/30/18 11:10	1	Solid
B-3-5	18-01-2135-9	01/30/18 11:30	1	Solid
B-4-1	18-01-2135-10	01/30/18 12:06	1	Solid
B-4-2.5	18-01-2135-11	01/30/18 12:10	1	Solid
B-4-5	18-01-2135-12	01/30/18 12:25	1	Solid
B-5-1	18-01-2135-13	01/30/18 13:05	1	Solid
B-5-2.5	18-01-2135-14	01/30/18 13:10	1	Solid
B-5-5	18-01-2135-15	01/30/18 13:53	1	Solid
B-6-1	18-01-2135-16	01/30/18 14:15	1	Solid
B-6-2.5	18-01-2135-17	01/30/18 14:23	1	Solid
B-6-5	18-01-2135-18	01/30/18 14:30	1	Solid
B-7-1	18-01-2135-19	01/30/18 15:11	1	Solid
B-7-2.5	18-01-2135-20	01/30/18 15:18	1	Solid
B-7-5	18-01-2135-21	01/30/18 15:26	1	Solid

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

 Units:
 mg/kg

Project: 383288 Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-5	18-01-2135-3-A	01/30/18 10:10	Solid	GC 46	02/01/18	02/01/18 21:28	180201B07
Parameter		Result	R	<u>L</u>	<u>DF</u>	Qua	<u>lifiers</u>
TPH C6-C10		ND	1	5	1.00		
TPH C10-C28		ND	1	5	1.00		
TPH C28-C40		ND	1	5	1.00		
TPH C6-C40 Total		ND	1	5	1.00		
TPH Gas/Diesel		ND	1	5	1.00		
Surrogate		Rec. (%)	<u>C</u>	Control Limits	<u>Qualifiers</u>		
n-Octacosane		95	6	0-140			

B-2-5	18-01-2135-6-A	01/30/18 10:35	Solid	GC 46	02/01/18	02/01/18 21:49	180201B07
Parameter		Result	RL	- -	<u>DF</u>	Qu	alifiers
TPH C6-C10		ND	15		1.00		
TPH C10-C28		ND	15		1.00		
TPH C28-C40		ND	15		1.00		
TPH C6-C40 Total		ND	15		1.00		
TPH Gas/Diesel		ND	15		1.00		
<u>Surrogate</u>		Rec. (%)	<u>Cc</u>	ontrol Limits	Qualifiers		
n-Octacosane		97	60	-140			

B-3-5	18-01-2135-9-A	01/30/18 11:30	Solid GC 46	02/01/18	02/01/18 180201B0 22:10	7
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifiers	
TPH C6-C10		ND	15	1.00		
TPH C10-C28		ND	15	1.00		
TPH C28-C40		ND	15	1.00		
TPH C6-C40 Total		ND	15	1.00		
TPH Gas/Diesel		ND	15	1.00		
<u>Surrogate</u>		Rec. (%)	Control Limits	<u>Qualifiers</u>		
n-Octacosane		94	60-140			

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

 Units:
 mg/kg

Project: 383288 Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4-5	18-01-2135-12-A	01/30/18 12:25	Solid	GC 46	02/01/18	02/01/18 22:31	180201B07
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
TPH C6-C10		ND	1	15	1.00		
TPH C10-C28		ND	1	15	1.00		
TPH C28-C40		ND	1	15	1.00		
TPH C6-C40 Total		ND	1	15	1.00		
TPH Gas/Diesel		ND	1	15	1.00		
Surrogate		Rec. (%)	<u>(</u>	Control Limits	<u>Qualifiers</u>		
n-Octacosane		100	6	60-140			

B-5-5	18-01-2135-15-A	01/30/18 13:53	Solid	GC 46 02	2/01/18	02/01/18 22:53	180201B07
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
TPH C6-C10		ND	15		1.00		
TPH C10-C28		ND	15		1.00		
TPH C28-C40		17	15		1.00		
TPH C6-C40 Total		18	15		1.00		
TPH Gas/Diesel		21	15		1.00		
<u>Surrogate</u>		Rec. (%)	<u>Cont</u>	trol Limits	<u>Qualifiers</u>		
n-Octacosane		96	60-1	40			

B-6-5	18-01-2135-18-A	01/30/18 14:30	Solid GC 4	02/01/18	02/01/18 23:13	180201B07
Parameter		Result	<u>RL</u>	<u>DF</u>	Qua	alifiers
TPH C6-C10		ND	15	1.00		
TPH C10-C28		ND	15	1.00		
TPH C28-C40		ND	15	1.00		
TPH C6-C40 Total		ND	15	1.00		
TPH Gas/Diesel		ND	15	1.00		
<u>Surrogate</u>		Rec. (%)	Control L	imits Qualifiers		
n-Octacosane		92	60-140			

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

 Units:
 mg/kg

Project: 383288 Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-7-1	18-01-2135-19-A	01/30/18 15:11	Solid	GC 46	02/01/18	02/01/18 23:34	180201B07
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>lifiers</u>
TPH C6-C10		ND	1	5	1.00		
TPH C10-C28		ND	1	5	1.00		
TPH C28-C40		ND	1	5	1.00		
TPH C6-C40 Total		ND	1	5	1.00		
TPH Gas/Diesel		ND	1	5	1.00		
Surrogate		Rec. (%)	<u>C</u>	Control Limits	<u>Qualifiers</u>		
n-Octacosane		99	6	0-140			

Method Blank	099-15-476-397	N/A	Solid GC 4	6 02/01/18	02/01/18 20:07	180201B07
<u>Parameter</u>	·	Result	<u>RL</u>	<u>DF</u>	Qua	alifiers
TPH C6-C10		ND	15	1.00		
TPH C10-C28		ND	15	1.00		
TPH C28-C40		ND	15	1.00		
TPH C6-C40 Total		ND	15	1.00		
TPH Gas/Diesel		ND	15	1.00		
Surrogate		Rec. (%)	Control Li	mits Qualifiers		
n-Octacosane		100	60-140			

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 3050B

 Method:
 EPA 6010B

 Units:
 mg/kg

Project: 383288 Page 1 of 1

Arsenic		2.07	0	.777	1.04		
Parameter		Result	R	<u>L</u>	DF	Qua	<u>lifiers</u>
B-5-5	18-01-2135-15-A	01/30/18 13:53	Solid	ICP 7300	02/01/18	02/01/18 17:17	180201L01
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID

Method Blank	097-01-002-25846 N/A	Solid	ICP 7300	02/01/18	02/01/18 16:12	180201L01
<u>Parameter</u>	<u>R</u>	<u>esult</u>	RL	<u>DF</u>	Qua	alifiers
Arsenic	N	D	0.743	0.990		

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 3545

Method: EPA 8082
Units: ug/kg

Project: 383288 Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-5-5	18-01-2135-15-A	01/30/18 13:53	Solid	GC 58	02/01/18	02/02/18 12:08	180201L05
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Aroclor-1016		ND	5	0	1.00		
Aroclor-1221		ND	5	0	1.00		
Aroclor-1232		ND	5	0	1.00		
Aroclor-1242		ND	5	0	1.00		
Aroclor-1248		ND	5	0	1.00		
Aroclor-1254		ND	5	0	1.00		
Aroclor-1260		ND	5	0	1.00		
Aroclor-1262		ND	5	0	1.00		
Aroclor-1268		ND	5	0	1.00		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		107	2	4-168			
2,4,5,6-Tetrachloro-m-Xylene		90	2	5-145			

Method Blank	099-12-535-4542	N/A	Solid GC 58	02/01/18	02/02/18 180201L05 10:38
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Aroclor-1016		ND	50	1.00	
Aroclor-1221		ND	50	1.00	
Aroclor-1232		ND	50	1.00	
Aroclor-1242		ND	50	1.00	
Aroclor-1248		ND	50	1.00	
Aroclor-1254		ND	50	1.00	
Aroclor-1260		ND	50	1.00	
Aroclor-1262		ND	50	1.00	
Aroclor-1268		ND	50	1.00	
Surrogate		Rec. (%)	Control Limits	s Qualifiers	
Decachlorobiphenyl		119	24-168		
2,4,5,6-Tetrachloro-m-Xylene		97	25-145		

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 8151A

 Method:
 EPA 8151A

Units: ug/kg

Project: 383288 Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-5-5	18-01-2135-15-A	01/30/18 13:53	Solid	GC 40	01/31/18	02/01/18 19:10	180131L17
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Dalapon		ND	;	250	1.00		
Dicamba		ND	!	9.8	1.00		
MCPP		ND	!	9800	1.00		
MCPA		ND		9800	1.00		
Dichlorprop		ND	!	98	1.00		
2,4-D		ND	!	98	1.00		
2,4,5-TP (Silvex)		ND		9.8	1.00		
2,4,5-T		ND	!	9.8	1.00		
2,4-DB		ND	!	98	1.00		
Dinoseb		ND		49	1.00		
Surrogate		Rec. (%)		Control Limits	<u>Qualifiers</u>		
2,4-Dichlorophenylacetic acid		50		44-146			

Method Blank	095-01-033-1542	N/A	Solid (GC 40	01/31/18	02/01/18 18:01	180131L17
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qu	<u>ialifiers</u>
Dalapon		ND	250		1.00		
Dicamba		ND	10		1.00		
MCPP		ND	1000	0	1.00		
MCPA		ND	1000	0	1.00		
Dichlorprop		ND	100		1.00		
2,4-D		ND	100		1.00		
2,4,5-TP (Silvex)		ND	10		1.00		
2,4,5-T		ND	10		1.00		
2,4-DB		ND	100		1.00		
Dinoseb		ND	50		1.00		
<u>Surrogate</u>		Rec. (%)	<u>Contr</u>	ol Limits	Qualifiers		
2,4-Dichlorophenylacetic acid		94	44-14	16			

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 3545

Method: EPA 8270C Units: mg/kg

Project: 383288 Page 1 of 6

B-5-5 18-01-2135-150 173-331-333-3 Solid GC/MS CCC 02/02/18 20/23/18 18002010 Parameter Result RL DE Qualifiers Acenaphthene ND 0.49 1.00 4.70 Aniline ND 0.49 1.00 4.70 Aniline ND 0.49 1.00 4.70 Aniline ND 0.49 1.00 4.70 Anthracene ND 0.49 1.00 4.70 Benzoline ND 0.49 1.00 4.70 Benzo (a) Anthracene ND 0.49 1.00 4.70 Benzo (a) Fyrene ND 0.49 1.00 4.70 Benzo (b) Fluoranthene ND 0.49 1.00 4.70 <	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Acenaphthene ND 0.49 1.00 Acenaphthylene ND 0.49 1.00 Aniline ND 0.49 1.00 Anthracene ND 0.49 1.00 Archeracene ND 0.49 1.00 Benzo (a) Anthracene ND 0.49 1.00 Benzo (a) Pyrene ND 0.49 1.00 Benzo (a) Pyrene ND 0.49 1.00 Benzo (b) Fluoranthene ND 0.49 1.00 Benzo (k) Fluoranthene ND 0.49 1.00 Benzo (k) Fluoranthene ND 0.49 1.00 Benzo (x) Fluoranthene ND 0.49 1.00 Bis(2-Chlorosporty)) Ether ND 0.49 1.00 Bis(2-Chlorosporty)) Ether ND 0.49 1.00	B-5-5	18-01-2135-15-A		Solid	GC/MS CCC	02/02/18	02/02/18 15:53	180202L01
Acenaphthylene ND 0.49 1.00 Aniline ND 0.49 1.00 Aniline ND 0.49 1.00 Anthracene ND 0.49 1.00 Benzidine ND 0.49 1.00 Benzo (a) Pyrene ND 0.49 1.00 Benzo (b) Fluoranthene ND 0.49 1.00 Benzo (k), i) Perylene ND 0.49 1.00 Benzo (k), ii Duranthene ND 0.49 1.00	<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
Anilinie ND 0.49 1.00 Anthracene ND 0.49 1.00 Azobenzene ND 0.49 1.00 Benzo (a) Anthracene ND 0.99 1.00 Benzo (a) Pyrene ND 0.49 1.00 Benzo (b) Fluoranthene ND 0.49 1.00 Benzo (s) Fluoranthene ND 0.49 1.00 Bis(2-Chlorotethys) Methane ND 0.49 1.00 Bis(2-Chlorotebrosy) Ether ND 0.49 1.00 Bis(2-Chlorotebrosy) Phthalate ND 0.49 1.	Acenaphthene		ND	0.	49	1.00		
Anthracene ND 0.49 1.00 Azobenzene ND 0.49 1.00 Benzo (a) Anthracene ND 9.9 1.00 Benzo (a) Pyrene ND 0.49 1.00 Benzo (b) Fluoranthene ND 0.49 1.00 Benzo (k), I) Perylene ND 0.49 1.00 Benzo (k), Il Corrientor ND 0.49 1.00 Benzo (k), Il Corrientor ND 0.49 1.00 Benzol Acid ND 0.49 1.00 Benzyl Alcohol ND 0.49 1.00 Benzyl Alcohol ND 0.49 1.00 Bis(2-Chlorethoxy) Methane ND 0.49 1.00<	Acenaphthylene		ND	0.	49	1.00		
Azobenzane ND 0.49 1.00 Benzidine ND 9.9 1.00 Benzo (a) Anthracene ND 0.49 1.00 Benzo (b) Fluoranthene ND 0.49 1.00 Benzo (g)-Fluoranthene ND 0.49 1.00 Benzo (g)-Fluoranthene ND 0.49 1.00 Benzo (Acid ND 2.5 1.00 Benzol Acid ND 0.49 1.00 Benzol Chiorathyl Betral ND 0.49 1.00 Bis(2-Chloroshyl) Ether ND 0.49 1.00 Bis(2-Chlorosphyl) Pthnialate ND 0.49 1.00 Buyl Benzyl Pthnialate ND 0.49 1.00 4-Chlorosa-Methylphenol ND 0.49 1.00 4-Chlorophenyl-P	Aniline		ND	0.	49	1.00		
Benzidine ND 9.9 1.00 Benzo (a) Anthracene ND 0.49 1.00 Benzo (b) Fluoranthene ND 0.49 1.00 Benzo (b) Fluoranthene ND 0.49 1.00 Benzo (b) Fluoranthene ND 0.49 1.00 Benzo (c) Fluoranthene ND 0.49 1.00 Benzol Acid ND 0.49 1.00 Benzyl Alcohol ND 0.49 1.00 Bis(2-Chloroethoxy) Methane ND 0.49 1.00 Bis(2-Chloroethyr) Ether ND 0.49 1.00 Bis(2-Chlorostyr) Phthalate ND 0.49 1.00 4-Bromophenyl-Phenyl Ether ND 0.49 1.00 4-Bromophenyl-Phenyl Ether ND 0.49 1.00 4-Chlorosa-Methylphenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND	Anthracene		ND	0.	49	1.00		
Benzo (a) Anthracene ND 0.49 1.00 Benzo (a) Flyene ND 0.49 1.00 Benzo (b) Fluoranthene ND 0.49 1.00 Benzo (b) Fluoranthene ND 0.49 1.00 Benzo (k) Fluoranthene ND 0.49 1.00 Benzo (k) Fluoranthene ND 0.49 1.00 Benzyl Alcohol ND 0.49 1.00 Bis(2-Chloroethoxy) Methane ND 0.49 1.00 Bis(2-Chloroethoxy) Ether ND 0.49 1.00 Bis(2-Chloroethoxy) Pethalate ND 0.49 1.00 Bis(2-Chloroisporpoyl) Ether ND 0.49 1.00 Bis(2-Chloroisporpoyl) Ether ND 0.49 1.00 4-Bromophenyl-Phenyl Ether ND 0.49 1.00 4-Bromophenyl-Phenyl Ether ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 4-Chlorophenol <t< td=""><td>Azobenzene</td><td></td><td>ND</td><td>0.</td><td>49</td><td>1.00</td><td></td><td></td></t<>	Azobenzene		ND	0.	49	1.00		
Benzo (a) Pyrene ND 0.49 1.00 Benzo (b) Fluoranthene ND 0.49 1.00 Benzo (k) Fluoranthene ND 0.49 1.00 Benzo (k) Fluoranthene ND 0.49 1.00 Benzol Acid ND 0.49 1.00 Benzyl Alcohol ND 0.49 1.00 Bis(2-Chloroethyl) Bthane ND 0.49 1.00 Bis(2-Chloroethyl) Ether ND 0.49 1.00 Bis(2-Chloroethyl) Pthalate ND 0.49 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.49 1.00 4-Bromophenyl-Phenyl Ether ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 2-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Chrysene ND 0.49 1.00 Di-n-Otyl Phthalate ND 0.49 </td <td>Benzidine</td> <td></td> <td>ND</td> <td>9.</td> <td>9</td> <td>1.00</td> <td></td> <td></td>	Benzidine		ND	9.	9	1.00		
Benzo (b) Fluoranthene ND 0.49 1.00 Benzo (g,h,i) Perylene ND 0.49 1.00 Benzo (k) Fluoranthene ND 0.49 1.00 Benzoic Acid ND 0.49 1.00 Benzyl Alcohol ND 0.49 1.00 Bis(2-Chloroethoxy) Methane ND 0.49 1.00 Bis(2-Chloroispropyl) Ether ND 0.49 1.00 Bis(2-Chlorospropyl) Ether ND 0.49 1.00 Bis(2-Chloroispropyl) Ether ND 0.49 1.00 4-Bromophenyl-Phenyl Ether ND 0.49 1.00 4-Bromophenyl-Phenyl Ether ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 2-Chlorophenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Din-Butyl Phthalate ND <td>Benzo (a) Anthracene</td> <td></td> <td>ND</td> <td>0.</td> <td>49</td> <td>1.00</td> <td></td> <td></td>	Benzo (a) Anthracene		ND	0.	49	1.00		
Benzo (g,h.i) Perylene ND 0.49 1.00 Benzo (k) Fluoranthene ND 0.49 1.00 Benzoic Acid ND 2.5 1.00 Benzyl Alcohol ND 0.49 1.00 Bis(2-Chloroethoxy) Methane ND 0.49 1.00 Bis(2-Chloroethyl) Ether ND 0.49 1.00 Bis(2-Chloroispropyl) Ether ND 0.49 1.00 Bis(2-Chloroispropyl) Ether ND 0.49 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.49 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.49 1.00 Butyl Benzyl Phthalate ND 0.49 1.00 4-Bromophenyl-Phenyl Ether ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chlorophenol ND 0.49 1.00 2-Chlorophenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Chrysene ND 0.49 <td>Benzo (a) Pyrene</td> <td></td> <td>ND</td> <td>0.</td> <td>49</td> <td>1.00</td> <td></td> <td></td>	Benzo (a) Pyrene		ND	0.	49	1.00		
Benzo (k) Fluoranthene ND 0.49 1.00 Benzoic Acid ND 2.5 1.00 Benzyl Alcohol ND 0.49 1.00 Bis(2-Chloroethyl) Bisther ND 0.49 1.00 Bis(2-Chloroisopropyl) Ether ND 0.49 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.49 1.00 4-Bromophenyl-Phenyl Ether ND 0.49 1.00 Butyl Benzyl Phthalate ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 2-Chlorophenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Chrysene ND 0.49 1.00 Chrysene ND 0.49 1.00 Di-n-Dutyl Phthalate ND 0.49 1.00 Di-n-Dutyl Phthalate ND 0.49 1	Benzo (b) Fluoranthene		ND	0.	49	1.00		
Benzoic Acid ND 2.5 1.00 Benzyl Alcohol ND 0.49 1.00 Bis(2-Chloroethoxy) Methane ND 0.49 1.00 Bis(2-Chloroethyl) Ether ND 0.49 1.00 Bis(2-Chloroispropyl) Ether ND 0.49 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.49 1.00 4-Bromophenyl-Phenyl Ether ND 0.49 1.00 4-Bromophenyl-Phenyl Ether ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chloropanylthalene ND 0.49 1.00 2-Chlorophenyl-Phenyl Ether ND 0.49 1.00 2-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Chrysene ND 0.49 1.00 Di-n-Butyl Phthalate ND 0.49 1.00 Di-n-Cotyl Phthalate ND 0.49 1.00 Dibenzofuran ND 0.49 <td>Benzo (g,h,i) Perylene</td> <td></td> <td>ND</td> <td>0.</td> <td>49</td> <td>1.00</td> <td></td> <td></td>	Benzo (g,h,i) Perylene		ND	0.	49	1.00		
Benzyl Alcohol ND 0.49 1.00 Bis(2-Chloroethxy) Methane ND 0.49 1.00 Bis(2-Chloroethyl) Ether ND 2.5 1.00 Bis(2-Chloroisopropyl) Ether ND 0.49 1.00 Bis(2-Ethylhxyl) Phthalate ND 0.49 1.00 Bis(2-Ethylhxyl) Phthalate ND 0.49 1.00 Butyl Benzyl Phthalate ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chloroaphthalene ND 0.49 1.00 2-Chlorophenyl-Benyl Ether ND 0.49 1.00 2-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Chrysene ND 0.49 1.00 Di-n-Butyl Phthalate ND 0.49 1.00 Di-n-Ctyl Phthalate ND 0.49 1.00 Dibenz (a,h) Anthracene ND 0.49 1.00 1,2-Dichlorobenzene ND <t< td=""><td>Benzo (k) Fluoranthene</td><td></td><td>ND</td><td>0.</td><td>49</td><td>1.00</td><td></td><td></td></t<>	Benzo (k) Fluoranthene		ND	0.	49	1.00		
Bis(2-Chloroethoxy) Methane ND 0.49 1.00 Bis(2-Chloroethyl) Ether ND 2.5 1.00 Bis(2-Chloroisopropyl) Ether ND 0.49 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.49 1.00 4-Bromophenyl-Phenyl Ether ND 0.49 1.00 Butyl Benzyl Phthalate ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chloroaniline ND 0.49 1.00 2-Chloroaphthalene ND 0.49 1.00 2-Chlorophenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Chrysene ND 0.49 1.00 Di-n-Butyl Phthalate ND 0.49 1.00 Di-n-Cytyl Phthalate ND 0.49 1.00 Dibenz (a,h) Anthracene ND 0.49 1.00 Dibenzofuran ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49	Benzoic Acid		ND	2.	5	1.00		
Bis(2-Chloroethyl) Ether ND 2.5 1.00 Bis(2-Chloroisopropyl) Ether ND 0.49 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.49 1.00 4-Bromophenyl-Phenyl Ether ND 0.49 1.00 Butyl Benzyl Phthalate ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chloroaniline ND 0.49 1.00 2-Chloroaphthalene ND 0.49 1.00 2-Chlorophenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Chrysene ND 0.49 1.00 Di-n-Butyl Phthalate ND 0.49 1.00 Di-n-Cotyl Phthalate ND 0.49 1.00 Dibenzofuran ND 0.49 1.00 Dibenzofuran ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 </td <td>Benzyl Alcohol</td> <td></td> <td>ND</td> <td>0.</td> <td>49</td> <td>1.00</td> <td></td> <td></td>	Benzyl Alcohol		ND	0.	49	1.00		
Bis(2-Chloroisopropyl) Ether ND 0.49 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.49 1.00 4-Bromophenyl-Phenyl Ether ND 0.49 1.00 Butyl Benzyl Phthalate ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chloroaniline ND 0.49 1.00 2-Chlorophenol ND 0.49 1.00 2-Chlorophenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Chrysene ND 0.49 1.00 Di-n-Butyl Phthalate ND 0.49 1.00 Di-n-Octyl Phthalate ND 0.49 1.00 Dibenz (a,h) Anthracene ND 0.49 1.00 Dibenz (branch ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00	Bis(2-Chloroethoxy) Methane		ND	0.	49	1.00		
Bis(2-Ethylhexyl) Phthalate ND 0.49 1.00 4-Bromophenyl-Phenyl Ether ND 0.49 1.00 Butyl Benzyl Phthalate ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chloroaniline ND 0.49 1.00 2-Chloroaphthalene ND 0.49 1.00 2-Chlorophenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Chrysene ND 0.49 1.00 Di-n-Butyl Phthalate ND 0.49 1.00 Di-n-Octyl Phthalate ND 0.49 1.00 Dibenz (a,h) Anthracene ND 0.49 1.00 Dibenz (ar,h) Anthracene ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzidine ND 0.49 1.	Bis(2-Chloroethyl) Ether		ND	2.	5	1.00		
Bis(2-Ethylhexyl) Phthalate ND 0.49 1.00 4-Bromophenyl-Phenyl Ether ND 0.49 1.00 Butyl Benzyl Phthalate ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chloroaniline ND 0.49 1.00 2-Chloroaphthalene ND 0.49 1.00 2-Chlorophenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Chrysene ND 0.49 1.00 Di-n-Butyl Phthalate ND 0.49 1.00 Di-n-Octyl Phthalate ND 0.49 1.00 Dibenz (a,h) Anthracene ND 0.49 1.00 Dibenz (branch ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzidine ND 0.49 1.00	Bis(2-Chloroisopropyl) Ether		ND	0.	49	1.00		
4-Bromophenyl-Phenyl Ether ND 0.49 1.00 Butyl Benzyl Phthalate ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chloroaphthalene ND 0.49 1.00 2-Chlorophenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Chrysene ND 0.49 1.00 Di-n-Butyl Phthalate ND 0.49 1.00 Di-n-Octyl Phthalate ND 0.49 1.00 Dibenz (a,h) Anthracene ND 0.49 1.00 Dibenzofuran ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,3-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzidine ND 0.49 1.00 3,3-Dichlorobenzidine ND 0.49 1.00 3,3-Dichlorobenzidine ND 0.49 1.00			ND	0.	49	1.00		
Butyl Benzyl Phthalate ND 0.49 1.00 4-Chloro-3-Methylphenol ND 0.49 1.00 4-Chloroaniline ND 0.49 1.00 2-Chlorophthalene ND 0.49 1.00 2-Chlorophenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Chrysene ND 0.49 1.00 Di-n-Butyl Phthalate ND 0.49 1.00 Di-n-Octyl Phthalate ND 0.49 1.00 Dibenz (a,h) Anthracene ND 0.49 1.00 Dibenzofuran ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,3-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzidine ND 0.49 1.00 3,3-Dichlorobenzidine ND 0.49 1.00			ND	0.	49	1.00		
4-Chloroaniline ND 0.49 1.00 2-Chlorophenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Chrysene ND 0.49 1.00 Di-n-Butyl Phthalate ND 0.49 1.00 Di-n-Octyl Phthalate ND 0.49 1.00 Dibenz (a,h) Anthracene ND 0.49 1.00 Dibenzofuran ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,3-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00 3,3'-Dichlorobenzidine ND 0.49 1.00 2,4-Dichlorophenol ND 0.49 1.00			ND	0.	49	1.00		
4-Chloroaniline ND 0.49 1.00 2-Chlorophenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Chrysene ND 0.49 1.00 Di-n-Butyl Phthalate ND 0.49 1.00 Di-n-Octyl Phthalate ND 0.49 1.00 Dibenz (a,h) Anthracene ND 0.49 1.00 Dibenzofuran ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,3-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00 3,3'-Dichlorobenzidine ND 0.49 1.00 2,4-Dichlorophenol ND 0.49 1.00	4-Chloro-3-Methylphenol		ND	0.	49	1.00		
2-Chlorophenol ND 0.49 1.00 4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Chrysene ND 0.49 1.00 Di-n-Butyl Phthalate ND 0.49 1.00 Di-n-Octyl Phthalate ND 0.49 1.00 Dibenz (a,h) Anthracene ND 0.49 1.00 Dibenzofuran ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,3-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00 3,3'-Dichlorobenzidine ND 0.49 1.00 2,4-Dichlorophenol ND 0.49 1.00			ND	0.	49	1.00		
4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Chrysene ND 0.49 1.00 Di-n-Butyl Phthalate ND 0.49 1.00 Di-n-Octyl Phthalate ND 0.49 1.00 Dibenz (a,h) Anthracene ND 0.49 1.00 Dibenzofuran ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,3-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00 3,3'-Dichlorobenzidine ND 9.9 1.00 2,4-Dichlorophenol ND 0.49 1.00	2-Chloronaphthalene		ND	0.	49	1.00		
4-Chlorophenyl-Phenyl Ether ND 0.49 1.00 Chrysene ND 0.49 1.00 Di-n-Butyl Phthalate ND 0.49 1.00 Di-n-Octyl Phthalate ND 0.49 1.00 Dibenz (a,h) Anthracene ND 0.49 1.00 Dibenzofuran ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,3-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00 3,3'-Dichlorobenzidine ND 9.9 1.00 2,4-Dichlorophenol ND 0.49 1.00	·		ND	0.	49	1.00		
Chrysene ND 0.49 1.00 Di-n-Butyl Phthalate ND 0.49 1.00 Di-n-Octyl Phthalate ND 0.49 1.00 Dibenz (a,h) Anthracene ND 0.49 1.00 Dibenzofuran ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,3-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00 3,3'-Dichlorobenzidine ND 9.9 1.00 2,4-Dichlorophenol ND 0.49 1.00	4-Chlorophenyl-Phenyl Ether		ND	0.	49	1.00		
Di-n-Octyl Phthalate ND 0.49 1.00 Dibenz (a,h) Anthracene ND 0.49 1.00 Dibenzofuran ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,3-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00 3,3'-Dichlorobenzidine ND 9.9 1.00 2,4-Dichlorophenol ND 0.49 1.00				0.	49	1.00		
Di-n-Octyl Phthalate ND 0.49 1.00 Dibenz (a,h) Anthracene ND 0.49 1.00 Dibenzofuran ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,3-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00 3,3'-Dichlorobenzidine ND 9.9 1.00 2,4-Dichlorophenol ND 0.49 1.00	Di-n-Butyl Phthalate		ND	0.	49	1.00		
Dibenz (a,h) Anthracene ND 0.49 1.00 Dibenzofuran ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,3-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00 3,3'-Dichlorobenzidine ND 9.9 1.00 2,4-Dichlorophenol ND 0.49 1.00	•			0.	49	1.00		
Dibenzofuran ND 0.49 1.00 1,2-Dichlorobenzene ND 0.49 1.00 1,3-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00 3,3'-Dichlorobenzidine ND 9.9 1.00 2,4-Dichlorophenol ND 0.49 1.00								
1,2-Dichlorobenzene ND 0.49 1.00 1,3-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00 3,3'-Dichlorobenzidine ND 9.9 1.00 2,4-Dichlorophenol ND 0.49 1.00			ND	0.	49	1.00		
1,3-Dichlorobenzene ND 0.49 1.00 1,4-Dichlorobenzene ND 0.49 1.00 3,3'-Dichlorobenzidine ND 9.9 1.00 2,4-Dichlorophenol ND 0.49 1.00								
1,4-Dichlorobenzene ND 0.49 1.00 3,3'-Dichlorobenzidine ND 9.9 1.00 2,4-Dichlorophenol ND 0.49 1.00	·							
3,3'-Dichlorobenzidine ND 9.9 1.00 2,4-Dichlorophenol ND 0.49 1.00								
2,4-Dichlorophenol ND 0.49 1.00								
	Diethyl Phthalate		ND			1.00		

AEI Consultants

2207 West 190th Street

Torrance, CA 90504-6001

Preparation:

Method:
Units:

Page 2 of 6

Date Received:

01/31/18

18-01-2135

Preparation:

EPA 3545

Method:

mg/kg

Project: 383288

110,001.000200				1 age 2 of 0
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Dimethyl Phthalate	0.62	0.49	1.00	
2,4-Dimethylphenol	ND	0.49	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.49	1.00	
2,6-Dichlorophenol	ND	0.49	1.00	
2,6-Dinitrotoluene	ND	0.49	1.00	
Fluoranthene	ND	0.49	1.00	
Fluorene	ND	0.49	1.00	
Hexachloro-1,3-Butadiene	ND	0.49	1.00	
Hexachlorobenzene	ND	0.49	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.49	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.49	1.00	
Isophorone	ND	0.49	1.00	
2-Methylnaphthalene	ND	0.49	1.00	
1-Methylnaphthalene	ND	0.49	1.00	
2-Methylphenol	ND	0.49	1.00	
3/4-Methylphenol	ND	0.49	1.00	
N-Nitroso-di-n-propylamine	ND	0.49	1.00	
N-Nitrosodimethylamine	ND	0.49	1.00	
N-Nitrosodiphenylamine	ND	0.49	1.00	
Naphthalene	ND	0.49	1.00	
4-Nitroaniline	ND	0.49	1.00	
3-Nitroaniline	ND	0.49	1.00	
2-Nitroaniline	ND	0.49	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.49	1.00	
2-Nitrophenol	ND	0.49	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.49	1.00	
Phenol	ND	0.49	1.00	
Pyrene	ND	0.49	1.00	
Pyridine	ND	0.49	1.00	
1,2,4-Trichlorobenzene	ND	0.49	1.00	
2,4,6-Trichlorophenol	ND	0.49	1.00	
0.45 T : 11	NB	0.40	4.00	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

2,4,5-Trichlorophenol

0.49

1.00

ND

AEI Consultants	Date Received:	01/31/18
2207 West 190th Street	Work Order:	18-01-2135
Torrance, CA 90504-6001	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: 383288		Page 3 of 6

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
2-Fluorobiphenyl	77	27-120	
2-Fluorophenol	76	25-120	
Nitrobenzene-d5	74	33-123	
p-Terphenyl-d14	86	27-159	
Phenol-d6	74	26-122	
2,4,6-Tribromophenol	73	18-138	

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 3545

Method: EPA 8270C Units: mg/kg

Project: 383288 Page 4 of 6

	ab Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank 0	99-12-549-4104	N/A	Solid	GC/MS CCC	02/02/18	02/02/18 13:26	180202L01
<u>Parameter</u>		Result	RI	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Acenaphthene		ND	0.	50	1.00		
Acenaphthylene		ND	0.	50	1.00		
Aniline		ND	0.	50	1.00		
Anthracene		ND	0.	50	1.00		
Azobenzene		ND	0.	50	1.00		
Benzidine		ND	10)	1.00		
Benzo (a) Anthracene		ND	0.	50	1.00		
Benzo (a) Pyrene		ND	0.	50	1.00		
Benzo (b) Fluoranthene		ND	0.	50	1.00		
Benzo (g,h,i) Perylene		ND	0.	50	1.00		
Benzo (k) Fluoranthene		ND	0.	50	1.00		
Benzoic Acid		ND	2.	5	1.00		
Benzyl Alcohol		ND	0.	50	1.00		
Bis(2-Chloroethoxy) Methane		ND	0.	50	1.00		
Bis(2-Chloroethyl) Ether		ND	2.	5	1.00		
Bis(2-Chloroisopropyl) Ether		ND	0.	50	1.00		
Bis(2-Ethylhexyl) Phthalate		ND	0.	50	1.00		
4-Bromophenyl-Phenyl Ether		ND	0.	50	1.00		
Butyl Benzyl Phthalate		ND	0.	50	1.00		
4-Chloro-3-Methylphenol		ND	0.	50	1.00		
4-Chloroaniline		ND	0.	50	1.00		
2-Chloronaphthalene		ND	0.	50	1.00		
2-Chlorophenol		ND	0.	50	1.00		
4-Chlorophenyl-Phenyl Ether		ND	0.	50	1.00		
Chrysene		ND	0.	50	1.00		
Di-n-Butyl Phthalate		ND	0.	50	1.00		
Di-n-Octyl Phthalate		ND	0.	50	1.00		
Dibenz (a,h) Anthracene		ND	0.	50	1.00		
Dibenzofuran		ND	0.	50	1.00		
1,2-Dichlorobenzene		ND		50	1.00		
1,3-Dichlorobenzene		ND		50	1.00		
1,4-Dichlorobenzene		ND		50	1.00		
3,3'-Dichlorobenzidine							
		ND	10)	1.00		
2,4-Dichlorophenol		ND ND) 50	1.00		

AEI Consultants

Date Received:

01/31/18
2207 West 190th Street

Work Order:

18-01-2135

Preparation:

EPA 3545

Method:

Units:

mg/kg

Project: 383288

Page 5 of 6

Project: 383288				Page 5 of 6
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dichlorophenol	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	ND	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	

AEI Consultants	Date Received:	01/31/18
2207 West 190th Street	Work Order:	18-01-2135
Torrance, CA 90504-6001	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: 383288		Page 6 of 6

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
2-Fluorobiphenyl	90	27-120	
2-Fluorophenol	86	25-120	
Nitrobenzene-d5	93	33-123	
p-Terphenyl-d14	101	27-159	
Phenol-d6	86	26-122	
2,4,6-Tribromophenol	90	18-138	

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 5030C

Method: EPA 8260B Units: ug/kg

Project: 383288 Page 1 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-5	18-01-2135-3-A	01/30/18 10:10	Solid	GC/MS GGG	01/31/18	01/31/18 21:05	180131L025
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>lifiers</u>
Acetone		ND	13	0	1.00		
Benzene		ND	5.1		1.00		
Bromobenzene		ND	5.1		1.00		
Bromochloromethane		ND	5.1		1.00		
Bromodichloromethane		ND	5.1		1.00		
Bromoform		ND	5.1		1.00		
Bromomethane		ND	26		1.00		
2-Butanone		ND	51		1.00		
n-Butylbenzene		ND	5.1		1.00		
sec-Butylbenzene		ND	5.1		1.00		
tert-Butylbenzene		ND	5.1		1.00		
Carbon Disulfide		ND	51		1.00		
Carbon Tetrachloride		ND	5.1		1.00		
Chlorobenzene		ND	5.1		1.00		
Chloroethane		ND	5.1		1.00		
Chloroform		ND	5.1		1.00		
Chloromethane		ND	26		1.00		
2-Chlorotoluene		ND	5.1		1.00		
4-Chlorotoluene		ND	5.1		1.00		
Dibromochloromethane		ND	5.1		1.00		
1,2-Dibromo-3-Chloropropane		ND	10		1.00		
1,2-Dibromoethane		ND	5.1		1.00		
Dibromomethane		ND	5.1		1.00		
1,2-Dichlorobenzene		ND	5.1		1.00		
1,3-Dichlorobenzene		ND	5.1		1.00		
1,4-Dichlorobenzene		ND	5.1		1.00		
Dichlorodifluoromethane		ND	5.1		1.00		
1,1-Dichloroethane		ND	5.1		1.00		
1,2-Dichloroethane		ND	5.1		1.00		
1,1-Dichloroethene		ND	5.1		1.00		
c-1,2-Dichloroethene		ND	5.1		1.00		
t-1,2-Dichloroethene		ND	5.1		1.00		
1,2-Dichloropropane		ND	5.1		1.00		
1,3-Dichloropropane		ND	5.1		1.00		
2,2-Dichloropropane		ND	5.1		1.00		

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: 383288
 Page 2 of 16

Project: 383288				Page 2 of 16
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	5.1	1.00	
c-1,3-Dichloropropene	ND	5.1	1.00	
t-1,3-Dichloropropene	ND	5.1	1.00	
Ethylbenzene	ND	5.1	1.00	
2-Hexanone	ND	51	1.00	
Isopropylbenzene	ND	5.1	1.00	
p-Isopropyltoluene	ND	5.1	1.00	
Methylene Chloride	ND	51	1.00	
4-Methyl-2-Pentanone	ND	51	1.00	
Naphthalene	ND	51	1.00	
n-Propylbenzene	ND	5.1	1.00	
Styrene	ND	5.1	1.00	
1,1,1,2-Tetrachloroethane	ND	5.1	1.00	
1,1,2,2-Tetrachloroethane	ND	5.1	1.00	
Tetrachloroethene	ND	5.1	1.00	
Toluene	ND	5.1	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.1	1.00	
1,1,1-Trichloroethane	ND	5.1	1.00	
1,1,2-Trichloroethane	ND	5.1	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	51	1.00	
Trichloroethene	ND	5.1	1.00	
1,2,3-Trichloropropane	ND	5.1	1.00	
1,2,4-Trimethylbenzene	ND	5.1	1.00	
Trichlorofluoromethane	ND	51	1.00	
1,3,5-Trimethylbenzene	ND	5.1	1.00	
Vinyl Acetate	ND	51	1.00	
Vinyl Chloride	ND	5.1	1.00	
p/m-Xylene	ND	5.1	1.00	
o-Xylene	ND	5.1	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.1	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	95	80-120		
Dibromofluoromethane	110	79-133		
1,2-Dichloroethane-d4	112	71-155		
Toluene-d8	101	80-120		

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 5030C

Method: EPA 8260B Units: ug/kg

Project: 383288 Page 3 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-2-5	18-01-2135-6-A	01/30/18 10:35	Solid	GC/MS GGG	01/31/18	01/31/18 19:16	180131L025
<u>Parameter</u>		<u>Result</u>	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	12	20	1.00		
Benzene		ND	5.	0	1.00		
Bromobenzene		ND	5.	0	1.00		
Bromochloromethane		ND	5.	0	1.00		
Bromodichloromethane		ND	5.	0	1.00		
Bromoform		ND	5.	0	1.00		
Bromomethane		ND	25	5	1.00		
2-Butanone		ND	50)	1.00		
n-Butylbenzene		ND	5.	0	1.00		
sec-Butylbenzene		ND	5.	0	1.00		
tert-Butylbenzene		ND	5.	0	1.00		
Carbon Disulfide		ND	50)	1.00		
Carbon Tetrachloride		ND	5.	0	1.00		
Chlorobenzene		ND	5.	0	1.00		
Chloroethane		ND	5.	0	1.00		
Chloroform		ND	5.	0	1.00		
Chloromethane		ND	25	5	1.00		
2-Chlorotoluene		ND	5.	0	1.00		
4-Chlorotoluene		ND	5.	0	1.00		
Dibromochloromethane		ND	5.	0	1.00		
1,2-Dibromo-3-Chloropropane		ND	10)	1.00		
1,2-Dibromoethane		ND	5.	0	1.00		
Dibromomethane		ND	5.	0	1.00		
1,2-Dichlorobenzene		ND	5.	0	1.00		
1,3-Dichlorobenzene		ND	5.	0	1.00		
1,4-Dichlorobenzene		ND	5.	0	1.00		
Dichlorodifluoromethane		ND	5.	0	1.00		
1,1-Dichloroethane		ND	5.	0	1.00		
1,2-Dichloroethane		ND	5.	0	1.00		
1,1-Dichloroethene		ND	5.	0	1.00		
c-1,2-Dichloroethene		ND	5.		1.00		
t-1,2-Dichloroethene		ND	5.		1.00		
1,2-Dichloropropane		ND	5.		1.00		
1,3-Dichloropropane		ND	5.		1.00		
2,2-Dichloropropane		ND	5.		1.00		

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: 383288
 Page 4 of 16

Project: 383288				Page 4 of 16
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	5.0	1.00	
c-1,3-Dichloropropene	ND	5.0	1.00	
t-1,3-Dichloropropene	ND	5.0	1.00	
Ethylbenzene	ND	5.0	1.00	
2-Hexanone	ND	50	1.00	
Isopropylbenzene	ND	5.0	1.00	
p-Isopropyltoluene	ND	5.0	1.00	
Methylene Chloride	ND	50	1.00	
4-Methyl-2-Pentanone	ND	50	1.00	
Naphthalene	ND	50	1.00	
n-Propylbenzene	ND	5.0	1.00	
Styrene	ND	5.0	1.00	
1,1,1,2-Tetrachloroethane	ND	5.0	1.00	
1,1,2,2-Tetrachloroethane	ND	5.0	1.00	
Tetrachloroethene	ND	5.0	1.00	
Toluene	ND	5.0	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.0	1.00	
1,1,1-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00	
Trichloroethene	ND	5.0	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	5.0	1.00	
Trichlorofluoromethane	ND	50	1.00	
1,3,5-Trimethylbenzene	ND	5.0	1.00	
Vinyl Acetate	ND	50	1.00	
Vinyl Chloride	ND	5.0	1.00	
p/m-Xylene	ND	5.0	1.00	
o-Xylene	ND	5.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	95	80-120		
Dibromofluoromethane	107	79-133		
1,2-Dichloroethane-d4	110	71-155		
Toluene-d8	101	80-120		

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 5030C

Method: EPA 8260B Units: ug/kg

Project: 383288 Page 5 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-3-5	18-01-2135-9-A	01/30/18 11:30	Solid	GC/MS GGG	01/31/18	01/31/18 21:32	180131L025
Parameter		Result	RI	=	<u>DF</u>	Qua	<u>alifiers</u>
Acetone		ND	13	80	1.00		
Benzene		ND	5.	0	1.00		
Bromobenzene		ND	5.	0	1.00		
Bromochloromethane		ND	5.	0	1.00		
Bromodichloromethane		ND	5.	0	1.00		
Bromoform		ND	5.	0	1.00		
Bromomethane		ND	25	;	1.00		
2-Butanone		ND	50)	1.00		
n-Butylbenzene		ND	5.0	0	1.00		
sec-Butylbenzene		ND	5.0	0	1.00		
tert-Butylbenzene		ND	5.	0	1.00		
Carbon Disulfide		ND	50)	1.00		
Carbon Tetrachloride		ND	5.	0	1.00		
Chlorobenzene		ND	5.	0	1.00		
Chloroethane		ND	5.	0	1.00		
Chloroform		ND	5.	0	1.00		
Chloromethane		ND	25	;	1.00		
2-Chlorotoluene		ND	5.	0	1.00		
4-Chlorotoluene		ND	5.	0	1.00		
Dibromochloromethane		ND	5.	0	1.00		
1,2-Dibromo-3-Chloropropane		ND	10)	1.00		
1,2-Dibromoethane		ND	5.	0	1.00		
Dibromomethane		ND	5.	0	1.00		
1,2-Dichlorobenzene		ND	5.	0	1.00		
1,3-Dichlorobenzene		ND	5.	0	1.00		
1,4-Dichlorobenzene		ND	5.	0	1.00		
Dichlorodifluoromethane		ND	5.0	0	1.00		
1,1-Dichloroethane		ND	5.	0	1.00		
1,2-Dichloroethane		ND	5.0	0	1.00		
1,1-Dichloroethene		ND	5.0	0	1.00		
c-1,2-Dichloroethene		ND	5.0		1.00		
t-1,2-Dichloroethene		ND	5.0		1.00		
1,2-Dichloropropane		ND	5.0		1.00		
1,3-Dichloropropane		ND	5.0		1.00		
2,2-Dichloropropane		ND	5.0		1.00		

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: 383288
 Page 6 of 16

Project: 383288				Page 6 of 16
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	5.0	1.00	
c-1,3-Dichloropropene	ND	5.0	1.00	
t-1,3-Dichloropropene	ND	5.0	1.00	
Ethylbenzene	ND	5.0	1.00	
2-Hexanone	ND	50	1.00	
Isopropylbenzene	ND	5.0	1.00	
p-Isopropyltoluene	ND	5.0	1.00	
Methylene Chloride	ND	50	1.00	
4-Methyl-2-Pentanone	ND	50	1.00	
Naphthalene	ND	50	1.00	
n-Propylbenzene	ND	5.0	1.00	
Styrene	ND	5.0	1.00	
1,1,1,2-Tetrachloroethane	ND	5.0	1.00	
1,1,2,2-Tetrachloroethane	ND	5.0	1.00	
Tetrachloroethene	ND	5.0	1.00	
Toluene	ND	5.0	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.0	1.00	
1,1,1-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00	
Trichloroethene	ND	5.0	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	5.0	1.00	
Trichlorofluoromethane	ND	50	1.00	
1,3,5-Trimethylbenzene	ND	5.0	1.00	
Vinyl Acetate	ND	50	1.00	
Vinyl Chloride	ND	5.0	1.00	
p/m-Xylene	ND	5.0	1.00	
o-Xylene	ND	5.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	95	80-120		
Dibromofluoromethane	110	79-133		
1,2-Dichloroethane-d4	112	71-155		
Toluene-d8	103	80-120		

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 5030C

Method: EPA 8260B Units: ug/kg

Project: 383288 Page 7 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4-5	18-01-2135-12-A	01/30/18 12:25	Solid	GC/MS GGG	01/31/18	01/31/18 21:59	180131L025
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	1:	30	1.00		
Benzene		ND	5.	.1	1.00		
Bromobenzene		ND	5.	.1	1.00		
Bromochloromethane		ND	5.	.1	1.00		
Bromodichloromethane		ND	5.	.1	1.00		
Bromoform		ND	5.	.1	1.00		
Bromomethane		ND	20	6	1.00		
2-Butanone		ND	5	1	1.00		
n-Butylbenzene		ND	5.	.1	1.00		
sec-Butylbenzene		ND	5.	.1	1.00		
tert-Butylbenzene		ND	5.	.1	1.00		
Carbon Disulfide		ND	5	1	1.00		
Carbon Tetrachloride		ND	5.	.1	1.00		
Chlorobenzene		ND	5.	.1	1.00		
Chloroethane		ND	5.	.1	1.00		
Chloroform		ND	5.	.1	1.00		
Chloromethane		ND	20	6	1.00		
2-Chlorotoluene		ND	5.	.1	1.00		
4-Chlorotoluene		ND	5.	.1	1.00		
Dibromochloromethane		ND	5.	.1	1.00		
1,2-Dibromo-3-Chloropropane		ND	10	0	1.00		
1,2-Dibromoethane		ND	5.	.1	1.00		
Dibromomethane		ND	5.		1.00		
1,2-Dichlorobenzene		ND	5.		1.00		
1,3-Dichlorobenzene		ND	5.	.1	1.00		
1,4-Dichlorobenzene		ND	5.		1.00		
Dichlorodifluoromethane		ND	5.		1.00		
1,1-Dichloroethane		ND	5.		1.00		
1,2-Dichloroethane		ND	5.		1.00		
1,1-Dichloroethene		ND	5.		1.00		
c-1,2-Dichloroethene		ND	5.		1.00		
t-1,2-Dichloroethene		ND	5.		1.00		
1,2-Dichloropropane		ND	5.		1.00		
1,3-Dichloropropane		ND	5.		1.00		
2,2-Dichloropropane		ND	5.		1.00		

AEI Consultants	Date Received:	01/31/18
2207 West 190th Street	Work Order:	18-01-2135
Torrance, CA 90504-6001	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: 383288		Page 8 of 16

Project: 383288				Page 8 of 16
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	5.1	1.00	
c-1,3-Dichloropropene	ND	5.1	1.00	
t-1,3-Dichloropropene	ND	5.1	1.00	
Ethylbenzene	ND	5.1	1.00	
2-Hexanone	ND	51	1.00	
Isopropylbenzene	ND	5.1	1.00	
p-Isopropyltoluene	ND	5.1	1.00	
Methylene Chloride	ND	51	1.00	
4-Methyl-2-Pentanone	ND	51	1.00	
Naphthalene	ND	51	1.00	
n-Propylbenzene	ND	5.1	1.00	
Styrene	ND	5.1	1.00	
1,1,1,2-Tetrachloroethane	ND	5.1	1.00	
1,1,2,2-Tetrachloroethane	ND	5.1	1.00	
Tetrachloroethene	ND	5.1	1.00	
Toluene	ND	5.1	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.1	1.00	
1,1,1-Trichloroethane	ND	5.1	1.00	
1,1,2-Trichloroethane	ND	5.1	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	51	1.00	
Trichloroethene	ND	5.1	1.00	
1,2,3-Trichloropropane	ND	5.1	1.00	
1,2,4-Trimethylbenzene	ND	5.1	1.00	
Trichlorofluoromethane	ND	51	1.00	
1,3,5-Trimethylbenzene	ND	5.1	1.00	
Vinyl Acetate	ND	51	1.00	
Vinyl Chloride	ND	5.1	1.00	
p/m-Xylene	ND	5.1	1.00	
o-Xylene	ND	5.1	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.1	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	93	80-120		
Dibromofluoromethane	109	79-133		
1,2-Dichloroethane-d4	109	71-155		
Toluene-d8	101	80-120		

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 5030C

Method: EPA 8260B Units: ug/kg

Project: 383288 Page 9 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-5-5	18-01-2135-15-A	01/30/18 13:53	Solid	GC/MS GGG	01/31/18	01/31/18 22:26	180131L025
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
Acetone		ND	120)	1.00		
Benzene		ND	5.0		1.00		
Bromobenzene		ND	5.0		1.00		
Bromochloromethane		ND	5.0		1.00		
Bromodichloromethane		ND	5.0		1.00		
Bromoform		ND	5.0		1.00		
Bromomethane		ND	25		1.00		
2-Butanone		ND	50		1.00		
n-Butylbenzene		ND	5.0		1.00		
sec-Butylbenzene		ND	5.0		1.00		
tert-Butylbenzene		ND	5.0		1.00		
Carbon Disulfide		ND	50		1.00		
Carbon Tetrachloride		ND	5.0		1.00		
Chlorobenzene		ND	5.0		1.00		
Chloroethane		ND	5.0		1.00		
Chloroform		ND	5.0		1.00		
Chloromethane		ND	25		1.00		
2-Chlorotoluene		ND	5.0		1.00		
4-Chlorotoluene		ND	5.0		1.00		
Dibromochloromethane		ND	5.0		1.00		
1,2-Dibromo-3-Chloropropane		ND	9.9		1.00		
1,2-Dibromoethane		ND	5.0		1.00		
Dibromomethane		ND	5.0		1.00		
1,2-Dichlorobenzene		ND	5.0		1.00		
1,3-Dichlorobenzene		ND	5.0		1.00		
1,4-Dichlorobenzene		ND	5.0		1.00		
Dichlorodifluoromethane		ND	5.0		1.00		
1,1-Dichloroethane		ND	5.0		1.00		
1,2-Dichloroethane		ND	5.0		1.00		
1,1-Dichloroethene		ND	5.0		1.00		
c-1,2-Dichloroethene		ND	5.0		1.00		
t-1,2-Dichloroethene		ND	5.0		1.00		
1,2-Dichloropropane		ND	5.0		1.00		
1,3-Dichloropropane		ND	5.0		1.00		
2,2-Dichloropropane		ND	5.0		1.00		

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: 383288
 Page 10 of 16

Project: 383288				Page 10 of 16
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	5.0	1.00	
c-1,3-Dichloropropene	ND	5.0	1.00	
t-1,3-Dichloropropene	ND	5.0	1.00	
Ethylbenzene	ND	5.0	1.00	
2-Hexanone	ND	50	1.00	
Isopropylbenzene	ND	5.0	1.00	
p-Isopropyltoluene	ND	5.0	1.00	
Methylene Chloride	ND	50	1.00	
4-Methyl-2-Pentanone	ND	50	1.00	
Naphthalene	ND	50	1.00	
n-Propylbenzene	ND	5.0	1.00	
Styrene	ND	5.0	1.00	
1,1,1,2-Tetrachloroethane	ND	5.0	1.00	
1,1,2,2-Tetrachloroethane	ND	5.0	1.00	
Tetrachloroethene	ND	5.0	1.00	
Toluene	ND	5.0	1.00	
1,2,3-Trichlorobenzene	ND	9.9	1.00	
1,2,4-Trichlorobenzene	ND	5.0	1.00	
1,1,1-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00	
Trichloroethene	ND	5.0	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	5.0	1.00	
Trichlorofluoromethane	ND	50	1.00	
1,3,5-Trimethylbenzene	ND	5.0	1.00	
Vinyl Acetate	ND	50	1.00	
Vinyl Chloride	ND	5.0	1.00	
p/m-Xylene	ND	5.0	1.00	
o-Xylene	ND	5.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	93	80-120		
Dibromofluoromethane	109	79-133		
1,2-Dichloroethane-d4	112	71-155		
Toluene-d8	104	80-120		

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 5030C

Method: EPA 8260B Units: ug/kg

Project: 383288 Page 11 of 16

Parameter	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Acatone ND 5.2 1.00 Benzene ND 5.2 1.00 Bromobenzene ND 5.2 1.00 Bromochioromethane ND 5.2 1.00 Bromodichioromethane ND 5.2 1.00 Bromoferm ND 5.2 1.00 Bromomethane ND 5.2 1.00 Bromoferman ND 5.2 1.00 Carbon Telrachora ND 5.2 1.00 Carbon Telrachora ND 5.2 1.00 Chlorochane ND 5.2 1.00 Chlorochane ND 5.2 1.00 Chlorochane ND 5.2 1.00 Dibro	B-6-5	18-01-2135-18-A		Solid	GC/MS GGG	01/31/18	01/31/18 22:54	180131L025
Benzene ND 5.2 1.00 Bromobenzene ND 5.2 1.00 Bromodichloromethane ND 5.2 1.00 Bromodichloromethane ND 5.2 1.00 Bromodichloromethane ND 5.2 1.00 Bromoderma ND 5.2 1.00 Pommethane ND 5.2 1.00 2-Butanone ND 5.2 1.00 n-Butylbenzene ND 5.2 1.00 sec-Butylbenzene ND 5.2 1.00 carbon Tetrachloride ND 5.2 1.00 Carbon Tetrachloride ND 5.2 1.00 Chlorothane ND 5.2 1.00 Chlorothane ND 5.2 1.00 Chlorotoluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 1,2-Dibromoethane ND 5.2 1.0	<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Bromobenzene ND 5.2 1.00 Bromochloromethane ND 5.2 1.00 Bromochloromethane ND 5.2 1.00 Bromochrame ND 5.2 1.00 Bromochrame ND 26 1.00 2-Butanone ND 5.2 1.00 neBulylbenzene ND 5.2 1.00 sec-Bulylbenzene ND 5.2 1.00 carbon Disulfide ND 5.2 1.00 Carbon Disulfide ND 5.2 1.00 Carbon Disulfide ND 5.2 1.00 Chlorobenzene ND 5.2 1.00 Chlorobenzene ND 5.2 1.00 Chlorodethane ND 5.2 1.00 Chlorodethane ND 5.2 1.00 Chlorodethane ND 5.2 1.00 Chlorodethane ND 5.2 1.00 Lj-Dibriomo-3-Chloropropane ND 5.2 1.	Acetone		ND	130)	1.00		
Bromodichloromethane ND 5.2 1.00 Bromoform ND 5.2 1.00 Bromoform ND 5.2 1.00 Bromomethane ND 26 1.00 2-Butanone ND 5.2 1.00 n-Butylbenzene ND 5.2 1.00 tert-Butylbenzene ND 5.2 1.00 Carbon Disulfide ND 5.2 1.00 Carbon Tetrachloride ND 5.2 1.00 Chlorobethane ND 5.2 1.00 Chlorochtane ND 5.2 1.00 Chlorochtoluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 1,2-Dichlorochertane ND 5.2 1.00 <	Benzene		ND	5.2		1.00		
Bromodichloromethane ND 5.2 1.00 Bromoform ND 5.2 1.00 Bromomethane ND 26 1.00 2-Butanone ND 52 1.00 n-Butylbenzene ND 5.2 1.00 sec-Butylbenzene ND 5.2 1.00 Carbon Disulfide ND 5.2 1.00 Carbon Tetrachloride ND 5.2 1.00 Carbon Tetrachloride ND 5.2 1.00 Chlorobenzene ND 5.2 1.00 Chlorodormethane ND 5.2 1.00 Chlorodormethane ND 5.2 1.00 Chlorotoluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 1,2-Dikromo-3-Chloropropane ND 5.2 1.00 1,2-Dikromo-3-Chloropropane ND 5.2 1.00 1,2-Dichlorobenzene ND	Bromobenzene		ND	5.2		1.00		
Bromoform ND 5.2 1.00 Brommethane ND 26 1.00 2-Butanone ND 52 1.00 -Butylbenzene ND 5.2 1.00 sec-Butylbenzene ND 5.2 1.00 tert-Butylbenzene ND 5.2 1.00 Carbon Disulfide ND 5.2 1.00 Carbon Tetrachloride ND 5.2 1.00 Carbon Tetrachloride ND 5.2 1.00 Chlorobenzene ND 5.2 1.00 Chlorochtane ND 5.2 1.00 Chlorochtane ND 5.2 1.00 Chlorochtane ND 5.2 1.00 2-Chlorotoluene ND 5.2 1.00 4-Chlorochtane ND 5.2 1.00 1,2-Dibromoethane ND 5.2 1.00 1,2-Dibromoethane ND 5.2 1.00 1,2-Dichlorobenzene ND 5.2 1.0	Bromochloromethane		ND	5.2		1.00		
Bromomethane ND 26 1,00 2-Butanone ND 52 1,00 n-Butylbenzene ND 5.2 1,00 ser-Butylbenzene ND 5.2 1,00 tert-Butylbenzene ND 5.2 1,00 Carbon Disulfide ND 5.2 1,00 Carbon Tetrachloride ND 5.2 1,00 Chloroform Tetrachloride ND 5.2 1,00 Chloroformathane ND 5.2 1,00 Chloroform ND 5.2 1,00 Chloroformethane ND 5.2 1,00 Chloroformethane ND 5.2 1,00 Chloroformethane ND 5.2 1,00 L'2-Dibromo-3-Chloropropane ND 5.2 1,00 L'2-Dibromo-3-Chloropropane ND 5.2 1,00 L'2-Dibromoethane ND 5.2 1,00 L'2-Dibromoethane ND 5.2 1,00 L'2-Dichloropethane <	Bromodichloromethane		ND	5.2		1.00		
2-Butanone ND 52 1.00 n-Butylbenzene ND 5.2 1.00 sec-Butylbenzene ND 5.2 1.00 Letr-Butylbenzene ND 5.2 1.00 Carbon Disulfide ND 5.2 1.00 Carbon Tetrachloride ND 5.2 1.00 Chlorobenzene ND 5.2 1.00 Chlorobenzene ND 5.2 1.00 Chlorodethane ND 5.2 1.00 Chlorodethane ND 5.2 1.00 Chlorodethane ND 5.2 1.00 Chlorodotluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 1,2-Dichorobethane ND 5.2 1.00 1,2-Dichorobethane ND 5.2 1.00 1,2-Dichlorobenzene ND 5.2 1.00 1,3-Dichlorobenzene ND 5.2 1.00 1,1-Dichloroethane ND 5.2 <td>Bromoform</td> <td></td> <td>ND</td> <td>5.2</td> <td></td> <td>1.00</td> <td></td> <td></td>	Bromoform		ND	5.2		1.00		
n-Butylbenzene ND 5.2 1.00 sec-Butylbenzene ND 5.2 1.00 tert-Butylbenzene ND 5.2 1.00 Carbon Disulfide ND 5.2 1.00 Carbon Tetrachloride ND 5.2 1.00 Chlorobenzene ND 5.2 1.00 Chlorobethane ND 5.2 1.00 Chlorodorm ND 5.2 1.00 Chlorodorbane ND 5.2 1.00 Chlorodotluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 1,2-Dibromo-S-Chloropropane ND 5.2 1.00 1,2-Dibromo-S-Chloropropane ND 5.2 1.00 1,2-Dibrlorobenzene ND 5.2 1.00 1,3-Dicklorobenzene ND 5.2 1.00 1,4-Dicklorobenzene ND<	Bromomethane		ND	26		1.00		
sec-Butylbenzene ND 5.2 1.00 tert-Butylbenzene ND 5.2 1.00 Carbon Disulfide ND 5.2 1.00 Carbon Tetrachloride ND 5.2 1.00 Chloroehzene ND 5.2 1.00 Chloroethane ND 5.2 1.00 Chloroform ND 5.2 1.00 Chlorofothane ND 5.2 1.00 Chloroethane ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dibrlorobenzene ND 5.2 1.00 1,4-Dichlorobenzene ND 5.2 1.00 1,1-Dichloroethane	2-Butanone		ND	52		1.00		
terl-Butylbenzene ND 5.2 1.00 Carbon Disulfide ND 52 1.00 Carbon Tetrachloride ND 5.2 1.00 Chlorobenzene ND 5.2 1.00 Chlorotelhane ND 5.2 1.00 Chloroterm ND 5.2 1.00 Chlorotelhane ND 5.2 1.00 4-Chloroteluene ND 5.2 1.00 4-Chlorotelhane ND 5.2 1.00 4-Chlorotelhane ND 5.2 1.00 1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dibromoethane ND 5.2 1.00 1,2-Dichlorobenzene ND 5.2 1.00 1,3-Dichlorobenzene ND 5.2 1.00 1,4-Dichlorobenzene ND 5.2 1.00 1,4-Dichloroethane ND 5.2 1.00 1,1-Dichloroethane	n-Butylbenzene		ND	5.2		1.00		
Carbon Disulfide ND 52 1.00 Carbon Tetrachloride ND 5.2 1.00 Chlorobenzene ND 5.2 1.00 Chlorobethane ND 5.2 1.00 Chloroform ND 5.2 1.00 Chlorotolune ND 5.2 1.00 2-Chlorotolune ND 5.2 1.00 4-Chlorotolune ND 5.2 1.00 4-Chlorotolune ND 5.2 1.00 4-Chlorotolune ND 5.2 1.00 1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dichlorobenzene ND 5.2 1.00 1,2-Dichlorobenzene ND 5.2 1.00 1,4-Dichlorobenzene ND 5.2 1.00 1,4-Dichloroethane ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,2-Dichloroethane N	sec-Butylbenzene		ND	5.2		1.00		
Carbon Tetrachloride ND 5.2 1.00 Chlorobenzene ND 5.2 1.00 Chlorotethane ND 5.2 1.00 Chloroform ND 5.2 1.00 Chlorotoluene ND 5.2 1.00 2-Chlorotoluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dibromoethane ND 5.2 1.00 1,2-Dibromoethane ND 5.2 1.00 1,4-Dichlorobenzene ND 5.2 1.00 1,4-Dichloroethane ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,1-Dichloroethane <	tert-Butylbenzene		ND	5.2		1.00		
Chlorobenzene ND 5.2 1.00 Chloroethane ND 5.2 1.00 Chloroform ND 5.2 1.00 Chloromethane ND 2.6 1.00 2-Chlorotoluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 Ubitromochloromethane ND 5.2 1.00 1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dibromoethane ND 5.2 1.00 1,2-Dibromoethane ND 5.2 1.00 1,2-Dichlorobenzene ND 5.2 1.00 1,3-Dichlorobenzene ND 5.2 1.00 1,4-Dichlorodifluoromethane ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,1-Dichloroethene	Carbon Disulfide		ND	52		1.00		
Chloroethane ND 5.2 1.00 Chloroform ND 5.2 1.00 Chloromethane ND 26 1.00 2-Chlorotoluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 Dibromochloromethane ND 5.2 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.2 1.00 1,2-Dibromoethane ND 5.2 1.00 1,2-Dibrlorobenzene ND 5.2 1.00 1,3-Dichlorobenzene ND 5.2 1.00 1,4-Dichlorothane ND 5.2 1.00 1,1-Dichlorothane ND 5.2 1.00 1,1-Dichlorothane ND 5.2 1.00 1,1-Dichlorothene ND 5.2 1.00 1,1-Dichlorothene ND 5.2 1.00 1,1-Dichlorothene ND 5.2 1.00 1,2-Dichlorothene ND </td <td>Carbon Tetrachloride</td> <td></td> <td>ND</td> <td>5.2</td> <td></td> <td>1.00</td> <td></td> <td></td>	Carbon Tetrachloride		ND	5.2		1.00		
Chloroform ND 5.2 1.00 Chloromethane ND 26 1.00 2-Chlorotoluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 Dibromochloromethane ND 5.2 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.2 1.00 Dibromomethane ND 5.2 1.00 1,2-Dichlorobenzene ND 5.2 1.00 1,3-Dichlorobenzene ND 5.2 1.00 1,4-Dichlorobenzene ND 5.2 1.00 1,4-Dichlorotefhane ND 5.2 1.00 1,1-Dichlorotefhane ND 5.2 1.00 1,2-Dichlorotefhane ND 5.2 1.00 1,1-Dichlorotefhane ND 5.2 1.00 1,1-Dichlorotefhane ND 5.2 1.00 1,1-Dichlorotefhane ND 5.2 1.00 1,2-Dichlorotefhane <td>Chlorobenzene</td> <td></td> <td>ND</td> <td>5.2</td> <td></td> <td>1.00</td> <td></td> <td></td>	Chlorobenzene		ND	5.2		1.00		
Chloromethane ND 26 1.00 2-Chlorotoluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 Dibromochloromethane ND 5.2 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.2 1.00 Dibromomethane ND 5.2 1.00 1,2-Dichlorobenzene ND 5.2 1.00 1,3-Dichlorobenzene ND 5.2 1.00 1,4-Dichlorobenzene ND 5.2 1.00 1,4-Dichlorobenzene ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,2-Dichloropropane ND 5.2 1.00 1,2-Dichloropropane	Chloroethane		ND	5.2		1.00		
2-Chlorotoluene ND 5.2 1.00 4-Chlorotoluene ND 5.2 1.00 Dibromochloromethane ND 5.2 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.2 1.00 Dibromomethane ND 5.2 1.00 1,2-Dichlorobenzene ND 5.2 1.00 1,4-Dichlorobenzene ND 5.2 1.00 1,4-Dichlorobenzene ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,2-Dichloroethane ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1-1,2-Dichloroethene ND 5.2 1.00 1,2-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane	Chloroform		ND	5.2				
4-Chlorotoluene ND 5.2 1.00 Dibromochloromethane ND 5.2 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.2 1.00 Dibromomethane ND 5.2 1.00 1,2-Dichlorobenzene ND 5.2 1.00 1,4-Dichlorobenzene ND 5.2 1.00 1,4-Dichlorodifluoromethane ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,2-Dichloroethane ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,2-Dichloroethene ND 5.2 1.00 1,2-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane	Chloromethane		ND	26		1.00		
Dibromochloromethane ND 5.2 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.2 1.00 Dibromomethane ND 5.2 1.00 1,2-Dichlorobenzene ND 5.2 1.00 1,3-Dichlorobenzene ND 5.2 1.00 1,4-Dichlorobenzene ND 5.2 1.00 Dichlorodifluoromethane ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,2-Dichloroethane ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,2-Dichloroptopane ND 5.2 1.00 1,2-Dichloroptopane ND 5.2 1.00 1,3-Dichloroptopane ND 5.2 1.00	2-Chlorotoluene		ND	5.2		1.00		
1,2-Dibromoe-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.2 1.00 Dibromomethane ND 5.2 1.00 1,2-Dichlorobenzene ND 5.2 1.00 1,3-Dichlorobenzene ND 5.2 1.00 1,4-Dichloroethane ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,2-Dichloroethane ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,2-Dichloroethene ND 5.2 1.00 1,2-Dichloroethene ND 5.2 1.00 1,2-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00	4-Chlorotoluene		ND	5.2		1.00		
1,2-Dibromoethane ND 5.2 1.00 Dibromomethane ND 5.2 1.00 1,2-Dichlorobenzene ND 5.2 1.00 1,3-Dichlorobenzene ND 5.2 1.00 1,4-Dichlorodifluoromethane ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,2-Dichloroethane ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 1,2-Dichloroethene ND 5.2 1.00 t-1,2-Dichloroethene ND 5.2 1.00 1,2-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00	Dibromochloromethane		ND	5.2		1.00		
Dibromomethane ND 5.2 1.00 1,2-Dichlorobenzene ND 5.2 1.00 1,3-Dichlorobenzene ND 5.2 1.00 1,4-Dichlorobenzene ND 5.2 1.00 Dichlorodifluoromethane ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,2-Dichloroethane ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 c-1,2-Dichloroethene ND 5.2 1.00 t-1,2-Dichloroethene ND 5.2 1.00 1,2-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00	1,2-Dibromo-3-Chloropropane		ND	10		1.00		
1,2-Dichlorobenzene ND 5.2 1.00 1,3-Dichlorobenzene ND 5.2 1.00 1,4-Dichlorobenzene ND 5.2 1.00 Dichlorodifluoromethane ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,2-Dichloroethane ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 c-1,2-Dichloroethene ND 5.2 1.00 t-1,2-Dichloroethene ND 5.2 1.00 1,2-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00	1,2-Dibromoethane		ND	5.2		1.00		
1,3-Dichlorobenzene ND 5.2 1.00 1,4-Dichlorobenzene ND 5.2 1.00 Dichlorodifluoromethane ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,2-Dichloroethane ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 c-1,2-Dichloroethene ND 5.2 1.00 t-1,2-Dichloroethene ND 5.2 1.00 1,2-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00	Dibromomethane		ND	5.2		1.00		
1,4-Dichlorobenzene ND 5.2 1.00 Dichlorodifluoromethane ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,2-Dichloroethane ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 c-1,2-Dichloroethene ND 5.2 1.00 t-1,2-Dichloroethene ND 5.2 1.00 1,2-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00	1,2-Dichlorobenzene		ND	5.2		1.00		
Dichlorodifluoromethane ND 5.2 1.00 1,1-Dichloroethane ND 5.2 1.00 1,2-Dichloroethane ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 c-1,2-Dichloroethene ND 5.2 1.00 t-1,2-Dichloroethene ND 5.2 1.00 1,2-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00	1,3-Dichlorobenzene		ND	5.2		1.00		
1,1-Dichloroethane ND 5.2 1.00 1,2-Dichloroethane ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 c-1,2-Dichloroethene ND 5.2 1.00 t-1,2-Dichloroethene ND 5.2 1.00 1,2-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00	1,4-Dichlorobenzene		ND	5.2		1.00		
1,1-Dichloroethane ND 5.2 1.00 1,2-Dichloroethane ND 5.2 1.00 1,1-Dichloroethene ND 5.2 1.00 c-1,2-Dichloroethene ND 5.2 1.00 t-1,2-Dichloroethene ND 5.2 1.00 1,2-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00	Dichlorodifluoromethane		ND	5.2		1.00		
1,1-Dichloroethene ND 5.2 1.00 c-1,2-Dichloroethene ND 5.2 1.00 t-1,2-Dichloroethene ND 5.2 1.00 1,2-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00	1,1-Dichloroethane		ND	5.2		1.00		
1,1-Dichloroethene ND 5.2 1.00 c-1,2-Dichloroethene ND 5.2 1.00 t-1,2-Dichloroethene ND 5.2 1.00 1,2-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00	1,2-Dichloroethane		ND	5.2		1.00		
c-1,2-Dichloroethene ND 5.2 1.00 t-1,2-Dichloroethene ND 5.2 1.00 1,2-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00	·		ND					
t-1,2-Dichloroethene ND 5.2 1.00 1,2-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00	·							
1,2-Dichloropropane ND 5.2 1.00 1,3-Dichloropropane ND 5.2 1.00			ND					
1,3-Dichloropropane ND 5.2 1.00	•							
	2,2-Dichloropropane		ND	5.2		1.00		

AEI Consultants

Date Received:

01/31/18
2207 West 190th Street

Work Order:

18-01-2135

Preparation:

EPA 5030C

Method:

Units:

ug/kg

Project: 383288

Page 12 of 16

Project: 383288				Page 12 of 16
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	5.2	1.00	
c-1,3-Dichloropropene	ND	5.2	1.00	
t-1,3-Dichloropropene	ND	5.2	1.00	
Ethylbenzene	ND	5.2	1.00	
2-Hexanone	ND	52	1.00	
Isopropylbenzene	ND	5.2	1.00	
p-Isopropyltoluene	ND	5.2	1.00	
Methylene Chloride	ND	52	1.00	
4-Methyl-2-Pentanone	ND	52	1.00	
Naphthalene	ND	52	1.00	
n-Propylbenzene	ND	5.2	1.00	
Styrene	ND	5.2	1.00	
1,1,1,2-Tetrachloroethane	ND	5.2	1.00	
1,1,2,2-Tetrachloroethane	ND	5.2	1.00	
Tetrachloroethene	ND	5.2	1.00	
Toluene	ND	5.2	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.2	1.00	
1,1,1-Trichloroethane	ND	5.2	1.00	
1,1,2-Trichloroethane	ND	5.2	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	52	1.00	
Trichloroethene	ND	5.2	1.00	
1,2,3-Trichloropropane	ND	5.2	1.00	
1,2,4-Trimethylbenzene	ND	5.2	1.00	
Trichlorofluoromethane	ND	52	1.00	
1,3,5-Trimethylbenzene	ND	5.2	1.00	
Vinyl Acetate	ND	52	1.00	
Vinyl Chloride	ND	5.2	1.00	
p/m-Xylene	ND	5.2	1.00	
o-Xylene	ND	5.2	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.2	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	95	80-120		
Dibromofluoromethane	109	79-133		
1,2-Dichloroethane-d4	112	71-155		
Toluene-d8	102	80-120		

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 5030C

Method: EPA 8260B Units: ug/kg

Project: 383288 Page 13 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-7-1	18-01-2135-19-A	01/30/18 15:11	Solid	GC/MS GGG	01/31/18	01/31/18 23:21	180131L025
Parameter		Result	RL	=	<u>DF</u>	Qua	alifiers
Acetone		ND	13	0	1.00		
Benzene		ND	5.0)	1.00		
Bromobenzene		ND	5.0)	1.00		
Bromochloromethane		ND	5.0)	1.00		
Bromodichloromethane		ND	5.0)	1.00		
Bromoform		ND	5.0)	1.00		
Bromomethane		ND	25		1.00		
2-Butanone		ND	50		1.00		
n-Butylbenzene		ND	5.0)	1.00		
sec-Butylbenzene		ND	5.0)	1.00		
tert-Butylbenzene		ND	5.0)	1.00		
Carbon Disulfide		ND	50		1.00		
Carbon Tetrachloride		ND	5.0)	1.00		
Chlorobenzene		ND	5.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	5.0)	1.00		
Chloromethane		ND	25		1.00		
2-Chlorotoluene		ND	5.0)	1.00		
4-Chlorotoluene		ND	5.0)	1.00		
Dibromochloromethane		ND	5.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	10		1.00		
1,2-Dibromoethane		ND	5.0)	1.00		
Dibromomethane		ND	5.0)	1.00		
1,2-Dichlorobenzene		ND	5.0)	1.00		
1,3-Dichlorobenzene		ND	5.0)	1.00		
1,4-Dichlorobenzene		ND	5.0)	1.00		
Dichlorodifluoromethane		ND	5.0		1.00		
1,1-Dichloroethane		ND	5.0)	1.00		
1,2-Dichloroethane		ND	5.0)	1.00		
1,1-Dichloroethene		ND	5.0)	1.00		
c-1,2-Dichloroethene		ND	5.0		1.00		
t-1,2-Dichloroethene		ND	5.0		1.00		
1,2-Dichloropropane		ND	5.0		1.00		
1,3-Dichloropropane		ND	5.0		1.00		
2,2-Dichloropropane		ND	5.0		1.00		

AEI Consultants

2207 West 190th Street

Torrance, CA 90504-6001

Method:
Units:

Page 14 of 16

Date Received:

01/31/18

01/31/18

01/31/18

01/31/18

01/31/18

01/31/18

01/31/18

01/31/18

01/31/18

Preparation:

EPA 5030C

Method:
Units:

ug/kg

Page 14 of 16

Project: 383288				Page 14 of 16		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>		
1,1-Dichloropropene	ND	5.0	1.00			
c-1,3-Dichloropropene	ND	5.0	1.00			
t-1,3-Dichloropropene	ND	5.0	1.00			
Ethylbenzene	ND	5.0	1.00			
2-Hexanone	ND	50	1.00			
Isopropylbenzene	ND	5.0	1.00			
p-Isopropyltoluene	ND	5.0	1.00			
Methylene Chloride	ND	50	1.00			
4-Methyl-2-Pentanone	ND	50	1.00			
Naphthalene	ND	50	1.00			
n-Propylbenzene	ND	5.0	1.00			
Styrene	ND	5.0	1.00			
1,1,1,2-Tetrachloroethane	ND	5.0	1.00			
1,1,2,2-Tetrachloroethane	ND	5.0	1.00			
Tetrachloroethene	ND	5.0	1.00			
Toluene	ND	5.0	1.00			
1,2,3-Trichlorobenzene	ND	10	1.00			
1,2,4-Trichlorobenzene	ND	5.0	1.00			
1,1,1-Trichloroethane	ND	5.0	1.00			
1,1,2-Trichloroethane	ND	5.0	1.00			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00			
Trichloroethene	ND	5.0	1.00			
1,2,3-Trichloropropane	ND	5.0	1.00			
1,2,4-Trimethylbenzene	ND	5.0	1.00			
Trichlorofluoromethane	ND	50	1.00			
1,3,5-Trimethylbenzene	ND	5.0	1.00			
Vinyl Acetate	ND	50	1.00			
Vinyl Chloride	ND	5.0	1.00			
p/m-Xylene	ND	5.0	1.00			
o-Xylene	ND	5.0	1.00			
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00			
Surrogate	Rec. (%)	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	93	80-120				
Dibromofluoromethane	109	79-133				
1,2-Dichloroethane-d4	113	71-155				
Toluene-d8	101	80-120				

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 5030C

Method: EPA 8260B Units: ug/kg

Project: 383288 Page 15 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-796-13673	N/A	Solid	GC/MS GGG	01/31/18	01/31/18 18:22	180131L025
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	120	0	1.00		
Benzene		ND	5.0)	1.00		
Bromobenzene		ND	5.0)	1.00		
Bromochloromethane		ND	5.0)	1.00		
Bromodichloromethane		ND	5.0)	1.00		
Bromoform		ND	5.0)	1.00		
Bromomethane		ND	25		1.00		
2-Butanone		ND	50		1.00		
n-Butylbenzene		ND	5.0)	1.00		
sec-Butylbenzene		ND	5.0)	1.00		
tert-Butylbenzene		ND	5.0)	1.00		
Carbon Disulfide		ND	50		1.00		
Carbon Tetrachloride		ND	5.0)	1.00		
Chlorobenzene		ND	5.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	5.0)	1.00		
Chloromethane		ND	25		1.00		
2-Chlorotoluene		ND	5.0)	1.00		
4-Chlorotoluene		ND	5.0)	1.00		
Dibromochloromethane		ND	5.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	10		1.00		
1,2-Dibromoethane		ND	5.0)	1.00		
Dibromomethane		ND	5.0)	1.00		
1,2-Dichlorobenzene		ND	5.0)	1.00		
1,3-Dichlorobenzene		ND	5.0)	1.00		
1,4-Dichlorobenzene		ND	5.0)	1.00		
Dichlorodifluoromethane		ND	5.0)	1.00		
1,1-Dichloroethane		ND	5.0)	1.00		
1,2-Dichloroethane		ND	5.0)	1.00		
1,1-Dichloroethene		ND	5.0)	1.00		
c-1,2-Dichloroethene		ND	5.0		1.00		
t-1,2-Dichloroethene		ND	5.0		1.00		
1,2-Dichloropropane		ND	5.0		1.00		
1,3-Dichloropropane		ND	5.0		1.00		
2,2-Dichloropropane		ND	5.0		1.00		

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: 383288
 Page 16 of 16

 Parameter
 Result
 RL
 DE
 Qualifiers

Project: 383288				Page 16 of 16
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	5.0	1.00	
c-1,3-Dichloropropene	ND	5.0	1.00	
t-1,3-Dichloropropene	ND	5.0	1.00	
Ethylbenzene	ND	5.0	1.00	
2-Hexanone	ND	50	1.00	
Isopropylbenzene	ND	5.0	1.00	
p-Isopropyltoluene	ND	5.0	1.00	
Methylene Chloride	ND	50	1.00	
4-Methyl-2-Pentanone	ND	50	1.00	
Naphthalene	ND	50	1.00	
n-Propylbenzene	ND	5.0	1.00	
Styrene	ND	5.0	1.00	
1,1,1,2-Tetrachloroethane	ND	5.0	1.00	
1,1,2,2-Tetrachloroethane	ND	5.0	1.00	
Tetrachloroethene	ND	5.0	1.00	
Toluene	ND	5.0	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.0	1.00	
1,1,1-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00	
Trichloroethene	ND	5.0	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	5.0	1.00	
Trichlorofluoromethane	ND	50	1.00	
1,3,5-Trimethylbenzene	ND	5.0	1.00	
Vinyl Acetate	ND	50	1.00	
Vinyl Chloride	ND	5.0	1.00	
p/m-Xylene	ND	5.0	1.00	
o-Xylene	ND	5.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	97	80-120		
Dibromofluoromethane	107	79-133		
1,2-Dichloroethane-d4	107	71-155		
Toluene-d8	100	80-120		

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

 Project: 383288
 Page 1 of 5

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
B-6-5	Sample		Solid	GC	46	02/01/18	02/01/18	23:13	180201S07	
B-6-5	Matrix Spike		Solid	GC	46	02/01/18	02/01/18	20:47	180201S07	
B-6-5	Matrix Spike	Duplicate	Solid	GC	46	02/01/18	02/01/18	21:08	180201S07	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH Gas/Diesel	ND	400.0	296.2	74	341.3	85	60-140	14	0-30	

AEI Consultants

2207 West 190th Street

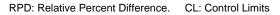
Work Order:

18-01-2135

Torrance, CA 90504-6001

Preparation:

Method:


EPA 3050B

Method:

EPA 6010B

Page 2 of 5

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
B-5-5	Sample		Solid	ICP	7300	02/01/18	02/01/18	17:17	180201S01	
B-5-5	Matrix Spike		Solid	ICP	7300	02/01/18	02/01/18	17:18	180201S01	
B-5-5	Matrix Spike	Duplicate	Solid	ICP	7300	02/01/18	02/01/18	17:20	180201S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Arsenic	2.070	25.00	29.87	111	32.07	120	75-125	7	0-20	

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 3545

 Method:
 EPA 8082

Project: 383288 Page 3 of 5

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
18-01-1716-37	Sample		Solid	GC	58	02/01/18	02/02/18	11:50	180201S05	
18-01-1716-37	Matrix Spike		Solid	GC	58	02/01/18	02/02/18	11:14	180201S05	
18-01-1716-37	Matrix Spike	Duplicate	Solid	GC	58	02/01/18	02/02/18	11:32	180201S05	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Aroclor-1016	ND	100.0	104.5	104	92.00	92	50-135	13	0-20	
Aroclor-1260	ND	100.0	118.0	118	96.50	96	50-135	20	0-20	

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

Project: 383288 Page 4 of 5

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepare	ed Date Ana	lyzed	MS/MSD Ba	tch Number
18-02-0040-2	Sample		Solid	GC	/MS CCC	02/02/18	02/02/18	14:59	180202S01	
18-02-0040-2	Matrix Spike		Solid	GC	/MS CCC	02/02/18	02/02/18	14:02	180202S01	
18-02-0040-2	Matrix Spike	Duplicate	Solid	GC	/MS CCC	02/02/18	02/02/18	14:20	180202S01	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Acenaphthene	ND	10.00	9.375	94	9.175	92	34-148	2	0-20	
Acenaphthylene	ND	10.00	9.047	90	8.777	88	53-120	3	0-20	
Butyl Benzyl Phthalate	ND	10.00	10.08	101	9.683	97	15-189	4	0-20	
4-Chloro-3-Methylphenol	ND	10.00	9.594	96	9.399	94	32-120	2	0-20	
2-Chlorophenol	ND	10.00	9.571	96	9.459	95	53-120	1	0-20	
1,4-Dichlorobenzene	ND	10.00	8.438	84	8.180	82	43-120	3	0-26	
Dimethyl Phthalate	0.7456	10.00	10.99	102	10.85	101	44-122	1	0-20	
2,4-Dinitrotoluene	ND	10.00	11.41	114	11.38	114	28-120	0	0-20	
Fluorene	ND	10.00	9.681	97	9.536	95	12-186	2	0-20	
N-Nitroso-di-n-propylamine	ND	10.00	9.625	96	9.126	91	38-140	5	0-20	
Naphthalene	ND	10.00	9.030	90	8.828	88	20-140	2	0-20	
4-Nitrophenol	ND	10.00	10.08	101	9.847	98	14-128	2	0-59	
Pentachlorophenol	ND	10.00	7.737	77	8.011	80	10-124	3	0-20	
Phenol	ND	10.00	9.328	93	8.936	89	22-124	4	0-20	
Pyrene	ND	10.00	9.519	95	9.037	90	31-169	5	0-20	
1,2,4-Trichlorobenzene	ND	10.00	9.203	92	8.847	88	56-120	4	0-20	

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 5030C

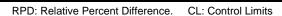
 Method:
 EPA 8260B

Project: 383288 Page 5 of 5

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
B-2-5	Sample		Solid	GC	/MS GGG	01/31/18	01/31/18	19:16	180131 S 013	
B-2-5	Matrix Spike		Solid	GC	/MS GGG	01/31/18	01/31/18	19:43	180131 S 013	
B-2-5	Matrix Spike	Duplicate	Solid	GC	/MS GGG	01/31/18	01/31/18	20:11	180131 S 013	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Benzene	ND	50.00	46.82	94	47.87	96	61-127	2	0-20	
Carbon Tetrachloride	ND	50.00	54.72	109	56.00	112	51-135	2	0-29	
Chlorobenzene	ND	50.00	45.56	91	47.55	95	57-123	4	0-20	
1,2-Dibromoethane	ND	50.00	47.16	94	49.36	99	64-124	5	0-20	
1,2-Dichlorobenzene	ND	50.00	46.30	93	48.12	96	35-131	4	0-25	
1,2-Dichloroethane	ND	50.00	48.29	97	49.93	100	80-120	3	0-20	
1,1-Dichloroethene	ND	50.00	51.24	102	54.17	108	47-143	6	0-25	
Ethylbenzene	ND	50.00	48.37	97	50.09	100	57-129	3	0-22	
Toluene	ND	50.00	48.15	96	49.34	99	63-123	2	0-20	
Trichloroethene	ND	50.00	49.07	98	50.14	100	44-158	2	0-20	
Vinyl Chloride	ND	50.00	48.29	97	51.70	103	49-139	7	0-47	
p/m-Xylene	ND	100.0	97.44	97	100.5	100	70-130	3	0-30	
o-Xylene	ND	50.00	48.75	97	50.46	101	70-130	3	0-30	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	48.45	97	51.04	102	57-123	5	0-21	

Quality Control - PDS/PDSD

 AEI Consultants
 Date Received:
 01/31/18


 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 3050B

 Method:
 EPA 6010B

Project: 383288 Page 1 of 1

Quality Control Sample ID	Туре		Ma	atrix	Instrument	Date P	repared Da	te Analyzed	PDS/PDSD Number	Batch
B-5-5	Sample		Sc	olid	ICP 7300	02/01/1	8 00:00 02/	/01/18 17:17	180201S01	
B-5-5	PDS		Sc	olid	ICP 7300	02/01/1	8 00:00 02/	/02/18 11:37	180201S01	
B-5-5	PDSD		Sc	olid	ICP 7300	02/01/1	8 00:00 02/	/02/18 11:37	180201S01	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	PDS Conc.	PDS %Rec.	PDSD Conc.	PDSD %Rec.	%Rec. C	L RPD	RPD CL	Qualifiers
Arsenic	2.070	25.00	32.85	123	34.52	130	75-125	5	0-20	5

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

Project: 383288 Page 1 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-476-397	LCS	Solid	GC 46	02/01/18	02/01/18 20:27	180201B07
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
TPH Gas/Diesel		400.0	306.4	77	70-130	0

AEI Consultants

2207 West 190th Street

Work Order:

18-01-2135

Torrance, CA 90504-6001

Preparation:

Method:

EPA 6010B

Project: 383288

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
097-01-002-25846	LCS	Solid	ICP 7300	02/01/18	02/01/18 16:13	180201L01
Parameter		Spike Added	Conc. Recover	ed LCS %Re	ec. %Rec	. CL Qualifiers
Arsenic		25.00	24.51	98	80-12	0

RPD: Relative Percent Difference. CL: Control Limits

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 3545

 Method:
 EPA 8082

Project: 383288 Page 3 of 6

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-12-535-4542	LCS	Solid	GC 58	02/01/18	02/02/18 10:56	180201L05
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %Red	<u>c.</u> %Rec.	CL Qualifiers
Aroclor-1016		100.0	85.00	85	50-135	5
Aroclor-1260		100.0	83.50	84	50-135	5

Quality Control - LCS/LCSD

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2135

 Torrance, CA 90504-6001
 Preparation:
 EPA 8151A

 Method:
 EPA 8151A

Project: 383288 Page 4 of 6

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD B	atch Number
095-01-033-1542	LCS	Sol	id	GC 40	01/31/18	02/02	2/18 14:19	180131L17	
095-01-033-1542	LCSD	Sol	id	GC 40	01/31/18	02/0	1/18 18:47	180131L17	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
2,4-D	400.0	349.0	87	342.0	86	49-127	2	0-24	
2,4,5-T	40.00	31.00	78	30.00	75	31-145	3	0-25	
2,4-DB	400.0	361.0	90	349.0	87	48-132	3	0-27	

AEI Consultants 2207 West 190th Street Torrance, CA 90504-6001 Date Received: Work Order: Preparation: Method: 01/31/18 18-01-2135 EPA 3545 EPA 8270C

Project: 383288 Page 5 of 6

Quality Control Sample ID	Туре	Matrix	Instrumen	Date Prep	ared Date Analy	zed LCS Batch N	Number
099-12-549-4104	LCS	Solid	GC/MS C	CC 02/02/18	02/02/18 13	3:44 180202L01	
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Acenaphthene		10.00	9.194	92	51-123	39-135	
Acenaphthylene		10.00	8.717	87	52-120	41-131	
Butyl Benzyl Phthalate		10.00	9.782	98	43-139	27-155	
4-Chloro-3-Methylphenol		10.00	9.073	91	55-121	44-132	
2-Chlorophenol		10.00	9.366	94	58-124	47-135	
1,4-Dichlorobenzene		10.00	8.718	87	42-132	27-147	
Dimethyl Phthalate		10.00	9.859	99	51-123	39-135	
2,4-Dinitrotoluene		10.00	10.64	106	51-129	38-142	
Fluorene		10.00	9.319	93	54-126	42-138	
N-Nitroso-di-n-propylamine		10.00	9.228	92	40-136	24-152	
Naphthalene		10.00	9.305	93	32-146	13-165	
4-Nitrophenol		10.00	9.349	93	24-126	7-143	
Pentachlorophenol		10.00	7.650	76	23-131	5-149	
Phenol		10.00	8.763	88	40-130	25-145	
Pyrene		10.00	9.137	91	47-143	31-159	
1,2,4-Trichlorobenzene		10.00	9.469	95	45-129	31-143	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

01/31/18

18-01-2135

Quality Control - LCS

AEI Consultants

2207 West 190th Street

Torrance, CA 90504-6001

Date Received:

Work Order:

Preparation:

Method:

EPA 5030C EPA 8260B

Project: 383288 Page 6 of 6

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prep	ared Date Anal	yzed LCS Bato	ch Number
099-12-796-13673	LCS	Solid	GC/MS G	GG 01/31/18	01/31/18	17:00 180131L	025
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
Benzene		50.00	50.65	101	80-120	73-127	
Carbon Tetrachloride		50.00	57.42	115	65-137	53-149	
Chlorobenzene		50.00	50.69	101	80-120	73-127	
1,2-Dibromoethane		50.00	52.98	106	80-120	73-127	
1,2-Dichlorobenzene		50.00	51.77	104	80-120	73-127	
1,2-Dichloroethane		50.00	53.67	107	80-120	73-127	
1,1-Dichloroethene		50.00	54.98	110	68-128	58-138	
Ethylbenzene		50.00	52.55	105	80-120	73-127	
Toluene		50.00	51.58	103	80-120	73-127	
Trichloroethene		50.00	52.57	105	80-120	73-127	
Vinyl Chloride		50.00	51.46	103	67-127	57-137	
p/m-Xylene		100.0	106.3	106	75-125	67-133	
o-Xylene		50.00	54.05	108	75-125	67-133	
Methyl-t-Butyl Ether (MTBE)		50.00	53.85	108	70-124	61-133	

Total number of LCS compounds: 14

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Sample Analysis Summary Report

Work Order: 18-01-2135	Vork Order: 18-01-2135						
Method	Extraction	Chemist ID	Instrument	Analytical Location			
EPA 6010B	EPA 3050B	935	ICP 7300	1			
EPA 8015B (M)	EPA 3550B	682	GC 46	1			
EPA 8082	EPA 3545	1028	GC 58	1			
EPA 8151A	EPA 8151A	669	GC 40	1			
EPA 8260B	EPA 5030C	1126	GC/MS GGG	2			
EPA 8270C	EPA 3545	923	GC/MS CCC	1			

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 18-01-2135 Page 1 of 1

<u>Qualifiers</u>	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
Χ	% Recovery and/or RPD out-of-range.

- Z Analyte presence was not confirmed by second column or GC/MS analysis.
 - Solid Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

💸 eurofins

S_i

CHAIN OF CUSTODY RECORD

A E I A	Rael Consultants, con		18-01-21 CLIENT PROJECT NAME I NUMBER 383-286	T8-UT-Z135 CLIENT PROJECT NAME / NUMBER:	PAGE:	i oF	N	
I AN I I	ultants, cen		COJECT NAME!	NUMBER:				
2204 W 1907 St e. 1968 4255 Ethany 1 as Standardo); 324 HR 148 HR \$\tilde{4}\) ECARD ASS \$\tilde{8}\) STANDARD); 61.00A.I. ID: SAMPLEID SAMPLING	21 405 504 H 1 100 500 E			il.		P.O. NO.:		
8-98 - 4255 A G. C.	11 Havits, co.		PROJECT CONTACT:			SAMPLER(S): (PRINT)	1}	
1998 ~ 4255 I CHANDARDY: 3 24 HR	ultants, con		7 72	アラント ソタイベ ディ	. 1	2 yesed	Le14/	
SAMPLE ID SAMPLING SAMPLING SAMPLING	9000 901				REQUESTED ANALYSES	NALYSES		
GIORAL ID: NS: SAMPLE ID SAMPLING DATE TIME	3900 5001	h		Please check bo	Please check box or fill in blank as needed	Jed.		T
SAMPLE ID SAMPLING DATE TIME		is log						
SAMPLING DATE TIME		<u>(3921b</u> ට ශ දේ ලිගෝ රා පිරදි	28 255					
SAMPLING DATE TIME	erved		9 8 3	۱۱۲ ۱۱۲ (م	<u>a</u> -			
DATE TIME	o Son	- 70 H∂. PI=	70 (B	(H)	7 <mark>0</mark>			
	ın	1	d	H	H			Т
8-1-1	×				×			
8-1-2.5	×				×			
B-1-5	x	× ×						
8-2-1	시							-
B-2-2.5	×							
B-2-5	×	×	اد					
8-3-1	× / /				×			
8-3-25	X				×			ļ <u>.</u>
8-5-5	×	XX	4 .					<u> </u>
B-4-1	x 수 .				×			<u> </u>
Refinquished by; (Signature)	Received by: (Signature/Affliation)	nature/Affiliadon)	, \		<i>Ι</i>)	Date: 1/3/1/8	Time:	Pá
Relinquished by: (Signature)	Received by: (Signature/Affliation)	nature/Affiliation)				Date:	Time:	ge /
Relinquished by: (Signature)	Received by: (Signature/Affiliation)	nature/Affiliation)				Date:	Time:	 7 of

	ζ
S	
\subseteq	
	
-	
0	
	
\exists	
a)	
લ ^{ું} છે. • ં લ	

06/02/14 Revision CHAIN OF CUSTODY RECORD イイス DASK WEYER Time: 1/80/18 SAMPLER(S): (PRINT) Ŗ REQUESTED ANALYSES Date: PAGE: DATE: OTOH × × × KENT VOLLMER MSANIC 383288 <u>80109</u> Hibicides 1518 × 500NS × WO # / LAB USE ONL) <u> १८</u>८२ PROJECT CONTACT 2087 × <u>ମଦ୍ରଅଞ୍ଚ</u> 520N × × × Received by: Signature/Affillation) Received by: (Signature/Affillation) (945) OII + Chesch) × × Field Filtered × Preserved × メ \times × LOG CODE Unpreserved NO. OF CONT. MATRIX ķ 1430 1210 1310 ◆ STANDARD 1423 1353 1925 1415 300 3151 11211 TIME SAMPLING 7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494
For couling service / sample drop off information, contact us26_sales@eurofinsus.com or call us.
LABORATORY CLIENT: 1/30/18 DATE E-MAIL: ☐ 5 DAYS 129.E **英** 72 HR Calscience URNAROUND TIME (Rush surcharges may apply to any TAT not ☐ 48 HR SAMPLE ID 8-6-25 Š B-5-2.5 ci i B-6-5 B-4-8-5-B-6-B. 7-GLOBAL ID: 8.4 ξά ¦Ω ☐ 24 HR B-7 Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) SPECIAL INSTRUCTIONS COELT EDF SAME DAY ADDRESS ş 1 LAB USE ONLY ¥ Q ? D ₩ ₹

S
\Box
4
\sim
\circ
<u>~</u>

ره
_
ର ଅନ୍ତ

CHAIN OF CUSTODY RECORD イスト Dash GEYCR W 1/20/18 Time: SAMPLER(S): (PRINT) Ö REQUESTED ANALYSES W Date: Please check box or fill in blank as needed. PAGE: DATE (TOH X LENT VOLKER MEENIC <u>80109</u> Herbici des 383288 1518 $\mathcal{O}FS$ 500VS PROJECT CONTACT: ५८८ 826013 SOUV TPH-extended Received by: (Signature/Affiliation) Received by: (Signature/Affiliation) **ฮริบธ**า พ*รเจ*ล Field Filtered 10G CODE: Preserved **Angreserved** 5 P 50 4 3014 MATRIX STATE: 1526 **★ STANDARD** SAMPLING For courier service / sample drop off information, contact us/26 sales@eurofinsus.com or call us LABORATORY CLENT: 1130/18 DATE O 5 DAYS X 72 HR 7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494 Calscience ☐ 48 HR SAMPLEID よっぴっぴ GLOBAL ID: TURNAROUND TIME (Rush swcharges ma ☐ 24 HR ά Refinquished by: (Signature) Relinquished by: (Signature) dinquished by: (Signature) SPECIAL INSTRUCTIONS COELT EDF CI SAME DAY ADDRESS: USE ONLY CITY 필

06/02/14 Revision

Calscience

WORK ORDER NUMBER: 18-01-213

COOLER / OF

SAMPLE RECEIPT CHECKLIST

AEI DATE: 01/3//2018 CLIENT: **TEMPERATURE:** (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: +0.2°C); Temperature (w/o CF): 3 · O °C (w/ CF): 3 °C; □ Blank ∠ Sample ☐ Sample(s) outside temperature criteria (PM/APM contacted by: ☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling ☐ Sample(s) received at ambient temperature; placed on ice for transport by courier Checked by: 834 Ambient Temperature:

Air

Filter CUSTODY SEAL: ک وطی Checked by: Not Present □ N/A Cooler ☐ Present and Intact ☐ Present but Not Intact Checked by: 🚣 6 Not Present □ N/A Sample(s) ☐ Present and Intact ☐ Present but Not Intact SAMPLE CONDITION: Yes No N/A Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete ☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers ☑No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquished time Sampler's harfie indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and in good condition П Sufficient volume/mass for analyses requested Aqueous samples for certain analyses received within 15-minute holding time □ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen□ Ø Ø Unpreserved aqueous sample(s) received for certain analyses □ Volatile Organics
□ Total Metals
□ Dissolved Metals Container(s) for certain analysis free of headspace...... □ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissolved Oxygen (SM 4500) ☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach) (Trip Blank Lot Number: CONTAINER TYPE: Aqueous: □ VOA □ VOAh □ VOAna₂ □ 100PJ □ 100PJ □ 125AGB □ 125AGB □ 125AGB □ 125AGBp □ 125PB □ 125PBznna (pH_9) □ 250AGB □ 250CGB □ 250CGBs (pH_2) □ 250PB □ 250PBn (pH_2) □ 500AGB □ 500AGJ □ 500AGJs (pH_2) □ 500PB □ 1AGB □ 1AGBna₂ □ 1AGBs (pH_2) □ 1AGBs (O&G) □ 1PB □ 1PBna (pH_12) □ _____ □ ___ □ ___ □ ___ ____): 🛛 _____ 🚨 ___ 🖺 ___ Air: ☐ Tedlar™ ☐ Canister ☐ Sorbent Tube ☐ PUF ☐ ______ Other Matrix (__ Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Resealable Bag Preservative: b = buffered, f = filtered, h = HCl, n = HNO₃, na = NaOH, na₂ = Na₂S₂O₃, p = H₃PO₄, Labeled/Checked by: Reviewed by:

 $s = H_2SO_4$, u = ultra-pure, $x = Na_2SO_3+NaHSO_4$, H_2O , $znna = Zn (CH_3CO_2)_2 + NaOH$

Calscience

WORK ORDER NUMBER: 18-01-2136

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AEI Consultants

Client Project Name: 383288

Attention: Kent Vollmer

2207 West 190th Street Torrance, CA 90504-6001

ResultLink >

Email your PM >

Approved for release on 02/05/2018 by:

Lori Thompson Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	383288
Nork Order Number:	18-01-2136

1	Work Order Narrative	3
2	Sample Summary	4
3	Client Sample Data	5 5
4	Quality Control Sample Data. 4.1 LCS/LCSD.	13 13
5	Summa Canister Vacuum Summary	15
6	Sample Analysis Summary	16
7	Glossary of Terms and Qualifiers	17
8	Chain-of-Custody/Sample Receipt Form	18

Work Order Narrative

Work Order: 18-01-2136 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 01/31/18. They were assigned to Work Order 18-01-2136.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

 Client:
 AEI Consultants
 Work Order:
 18-01-2136

 2207 West 190th Street
 Project Name:
 383288

Torrance, CA 90504-6001 PO Number: 152277

Date/Time 01/31/18 12:05 Received:

Number of 3

Containers:

Attn: Kent Vollmer

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
B-1	18-01-2136-1	01/30/18 15:40	1	Air
B-3	18-01-2136-2	01/30/18 15:55	1	Air
B-4	18-01-2136-3	01/30/18 16:10	1	Air

Analytical Report

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2136

 Torrance, CA 90504-6001
 Preparation:
 N/A

Preparation: N/A Method: EPA TO-15 Units: ug/m3

Project: 383288 Page 1 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1	18-01-2136-1-A	01/30/18 15:40	Air	GC/MS 000	N/A	02/02/18 01:19	180201L01
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	alifiers
1,2,4-Trichlorobenzene		ND	15		1.00		
Acetone		150	4.8	3	1.00		
Benzene		26	1.6	5	1.00		
Benzyl Chloride		ND	7.8	3	1.00		
Bromodichloromethane		ND	3.4	ļ	1.00		
Bromoform		ND	5.2	2	1.00		
Bromomethane		ND	1.9)	1.00		
2-Butanone		24	4.4	ļ	1.00		
n-Butylbenzene		ND	2.7	7	1.00		
sec-Butylbenzene		ND	2.7	7	1.00		
tert-Butylbenzene		ND	2.7	7	1.00		
Carbon Disulfide		66	6.2	2	1.00		
Carbon Tetrachloride		ND	3.1	l	1.00		
Chlorobenzene		ND	2.3	3	1.00		
Chloroethane		ND	1.3	3	1.00		
Chloroform		ND	2.4		1.00		
Chloromethane		ND	1.0)	1.00		
Dibromochloromethane		ND	4.3		1.00		
1,2-Dibromoethane		ND	3.8	3	1.00		
1,2-Dichlorobenzene		ND	3.0		1.00		
1,3-Dichlorobenzene		ND	3.0)	1.00		
1,4-Dichlorobenzene		55	3.0)	1.00		
Dichlorodifluoromethane		ND	2.5	5	1.00		
1,1-Dichloroethane		ND	2.0		1.00		
1,2-Dichloroethane		ND	2.0		1.00		
1,1-Dichloroethene		ND	2.0)	1.00		
c-1,2-Dichloroethene		ND	2.0)	1.00		
t-1,2-Dichloroethene		ND	2.0		1.00		
1,2-Dichloropropane		ND	2.3	3	1.00		
c-1,3-Dichloropropene		ND	2.3		1.00		
t-1,3-Dichloropropene		ND	4.5		1.00		
Dichlorotetrafluoroethane		ND	14		1.00		
1,1-Difluoroethane		ND	5.4		1.00		
Ethylbenzene		21	2.2		1.00		
4-Ethyltoluene		6.4	2.5		1.00		

Toluene-d8

Analytical Report

AEI Consultants	Da	ate Received:		01/31/18	
2207 West 190th Street	W	ork Order:		18-01-2136	
Torrance, CA 90504-6001	Pr		N/A		
·	Me	ethod:		EPA TO-15	
		nits:		ug/m3	
Project: 383288	O.	mo.		Page 2 of 8	
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers	
Hexachloro-1,3-Butadiene	ND	16	1.00		
2-Hexanone	ND	6.1	1.00		
Isopropanol	29	12	1.00		
Methyl-t-Butyl Ether (MTBE)	ND	7.2	1.00		
Methylene Chloride	ND	17	1.00		
4-Methyl-2-Pentanone	27	6.1	1.00		
Styrene	ND	6.4	1.00		
1,1,2,2-Tetrachloroethane	ND	6.9	1.00		
Tetrachloroethene	ND	3.4	1.00		
Toluene	130	1.9	1.00		
1,1,1-Trichloroethane	ND	2.7	1.00		
1,1,2-Trichloroethane	ND	2.7	1.00		
Trichloroethene	ND	2.7	1.00		
Trichlorofluoromethane	ND	5.6	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	11	1.00		
1,2,4-Trimethylbenzene	18	7.4	1.00		
1,3,5-Trimethylbenzene	7.1	2.5	1.00		
Vinyl Acetate	ND	7.0	1.00		
Vinyl Chloride	ND	1.3	1.00		
o-Xylene	20	2.2	1.00		
p/m-Xylene	72	8.7	1.00		
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	97	68-134			
1,2-Dichloroethane-d4	99	67-133			

99

70-130

Analytical Report

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2136

 Torrance, CA 90504-6001
 Preparation:
 N/A

Method: EPA TO-15
Units: ug/m3

Project: 383288 Page 3 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-3	18-01-2136-2-A	01/30/18 15:55	Air	GC/MS 000	N/A	02/02/18 03:02	180201L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	lifiers
1,2,4-Trichlorobenzene		ND	15		1.00		
Acetone		79	4.8	3	1.00		
Benzene		2.0	1.6	5	1.00		
Benzyl Chloride		ND	7.8	3	1.00		
Bromodichloromethane		ND	3.4	ļ	1.00		
Bromoform		ND	5.2	2	1.00		
Bromomethane		ND	1.9)	1.00		
2-Butanone		16	4.4	ļ	1.00		
n-Butylbenzene		ND	2.7	,	1.00		
sec-Butylbenzene		ND	2.7	,	1.00		
tert-Butylbenzene		ND	2.7	,	1.00		
Carbon Disulfide		14	6.2	2	1.00		
Carbon Tetrachloride		ND	3.1		1.00		
Chlorobenzene		ND	2.3	3	1.00		
Chloroethane		ND	1.3	3	1.00		
Chloroform		ND	2.4	ļ	1.00		
Chloromethane		ND	1.0)	1.00		
Dibromochloromethane		ND	4.3	3	1.00		
1,2-Dibromoethane		ND	3.8	3	1.00		
1,2-Dichlorobenzene		ND	3.0)	1.00		
1,3-Dichlorobenzene		ND	3.0)	1.00		
1,4-Dichlorobenzene		4.5	3.0)	1.00		
Dichlorodifluoromethane		ND	2.5	5	1.00		
1,1-Dichloroethane		ND	2.0)	1.00		
1,2-Dichloroethane		ND	2.0)	1.00		
1,1-Dichloroethene		ND	2.0)	1.00		
c-1,2-Dichloroethene		ND	2.0)	1.00		
t-1,2-Dichloroethene		ND	2.0)	1.00		
1,2-Dichloropropane		ND	2.3	3	1.00		
c-1,3-Dichloropropene		ND	2.3	3	1.00		
t-1,3-Dichloropropene		ND	4.5		1.00		
Dichlorotetrafluoroethane		ND	14		1.00		
1,1-Difluoroethane		ND	5.4	ļ	1.00		
Ethylbenzene		ND	2.2		1.00		
4-Ethyltoluene		ND	2.5		1.00		

1,3,5-Trimethylbenzene

Vinyl Acetate

Vinyl Chloride

o-Xylene

p/m-Xylene

Analytical Report

AEI Consultants	Date Received:			01/31/18
2207 West 190th Street	W	18-01-2136		
Torrance, CA 90504-6001	Pr	eparation:		N/A
	Me	ethod:		EPA TO-15
	Ur	nits:		ug/m3
Project: 383288	_			Page 4 of 8
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Hexachloro-1,3-Butadiene	ND	16	1.00	
2-Hexanone	ND	6.1	1.00	
Isopropanol	15	12	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	7.2	1.00	
Methylene Chloride	ND	17	1.00	
4-Methyl-2-Pentanone	16	6.1	1.00	
Styrene	ND	6.4	1.00	
1,1,2,2-Tetrachloroethane	ND	6.9	1.00	
Tetrachloroethene	35	3.4	1.00	
Toluene	3.4	1.9	1.00	
1,1,1-Trichloroethane	ND	2.7	1.00	
1,1,2-Trichloroethane	ND	2.7	1.00	
Trichloroethene	ND	2.7	1.00	
Trichlorofluoromethane	ND	5.6	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	11	1.00	
1,2,4-Trimethylbenzene	ND	7.4	1.00	

ND

ND

ND

ND

ND

2.5

7.0

1.3

2.2

8.7

1.00

1.00

1.00

1.00

1.00

Qualifiers

 Surrogate
 Rec. (%)
 Control Limits

 1,4-Bromofluorobenzene
 100
 68-134

 1,2-Dichloroethane-d4
 99
 67-133

 Toluene-d8
 96
 70-130

Analytical Report

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2136

 Torrance, CA 90504-6001
 Preparation:
 N/A

Preparation: N/A
Method: EPA TO-15
Units: ug/m3

Project: 383288 Page 5 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4	18-01-2136-3-A	01/30/18 16:10	Air	GC/MS 000	N/A	02/02/18 04:06	180201L01
Parameter		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
1,2,4-Trichlorobenzene		ND	15		1.00		
Acetone		59	4.8	}	1.00		
Benzene		ND	1.6	;	1.00		
Benzyl Chloride		ND	7.8	}	1.00		
Bromodichloromethane		ND	3.4		1.00		
Bromoform		ND	5.2	!	1.00		
Bromomethane		ND	1.9)	1.00		
2-Butanone		9.7	4.4		1.00		
n-Butylbenzene		ND	2.7	•	1.00		
sec-Butylbenzene		ND	2.7	•	1.00		
tert-Butylbenzene		ND	2.7	•	1.00		
Carbon Disulfide		14	6.2		1.00		
Carbon Tetrachloride		ND	3.1		1.00		
Chlorobenzene		ND	2.3	}	1.00		
Chloroethane		ND	1.3	1	1.00		
Chloroform		3.6	2.4		1.00		
Chloromethane		ND	1.0)	1.00		
Dibromochloromethane		ND	4.3	}	1.00		
1,2-Dibromoethane		ND	3.8	}	1.00		
1,2-Dichlorobenzene		ND	3.0)	1.00		
1,3-Dichlorobenzene		ND	3.0)	1.00		
1,4-Dichlorobenzene		ND	3.0)	1.00		
Dichlorodifluoromethane		ND	2.5	;	1.00		
1,1-Dichloroethane		ND	2.0)	1.00		
1,2-Dichloroethane		ND	2.0)	1.00		
1,1-Dichloroethene		ND	2.0)	1.00		
c-1,2-Dichloroethene		ND	2.0)	1.00		
t-1,2-Dichloroethene		ND	2.0)	1.00		
1,2-Dichloropropane		ND	2.3	}	1.00		
c-1,3-Dichloropropene		ND	2.3	1	1.00		
t-1,3-Dichloropropene		ND	4.5	;	1.00		
Dichlorotetrafluoroethane		ND	14		1.00		
1,1-Difluoroethane		ND	5.4	ļ	1.00		
Ethylbenzene		ND	2.2	!	1.00		
4-Ethyltoluene		ND	2.5	i	1.00		

Analytical Report

AEI Consultants	Da	Date Received:				
2207 West 190th Street	Wo	rk Order:		18-01-2136		
Torrance, CA 90504-6001	Pre	N/A				
		thod:		EPA TO-15		
	Un			ug/m3		
Project: 383288	3 11			Page 6 of 8		
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers		
Hexachloro-1,3-Butadiene	ND	16	1.00			
2-Hexanone	ND	6.1	1.00			
Isopropanol	ND	12	1.00			
Methyl-t-Butyl Ether (MTBE)	ND	7.2	1.00			
Methylene Chloride	ND	17	1.00			
4-Methyl-2-Pentanone	ND	6.1	1.00			
Styrene	ND	6.4	1.00			
1,1,2,2-Tetrachloroethane	ND	6.9	1.00			
Tetrachloroethene	8.8	3.4	1.00			
Toluene	2.4	1.9	1.00			
1,1,1-Trichloroethane	ND	2.7	1.00			
1,1,2-Trichloroethane	ND	2.7	1.00			
Trichloroethene	ND	2.7	1.00			
Trichlorofluoromethane	ND	5.6	1.00			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	11	1.00			
1,2,4-Trimethylbenzene	ND	7.4	1.00			
1,3,5-Trimethylbenzene	ND	2.5	1.00			
Vinyl Acetate	ND	7.0	1.00			
Vinyl Chloride	ND	1.3	1.00			
o-Xylene	ND	2.2	1.00			
p/m-Xylene	ND	8.7	1.00			
Surrogate	Rec. (%)	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	100	68-134				
1,2-Dichloroethane-d4	100	67-133				
Toluene-d8	99	70-130				

Project: 383288

Analytical Report

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2136

 Torrance, CA 90504-6001
 Preparation:
 N/A

Preparation: N/A
Method: EPA TO-15

Units: ug/m3 Page 7 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	095-01-021-19686	N/A	Air	GC/MS 000	N/A	02/01/18 15:39	180201L01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>lifiers</u>
1,2,4-Trichlorobenzene		ND	15		1.00		
Acetone		ND	4.8	3	1.00		
Benzene		ND	1.6	5	1.00		
Benzyl Chloride		ND	7.8	3	1.00		
Bromodichloromethane		ND	3.4	ļ.	1.00		
Bromoform		ND	5.2	2	1.00		
Bromomethane		ND	1.9)	1.00		
2-Butanone		ND	4.4	ļ	1.00		
n-Butylbenzene		ND	2.7	•	1.00		
sec-Butylbenzene		ND	2.7	•	1.00		
tert-Butylbenzene		ND	2.7	•	1.00		
Carbon Disulfide		ND	6.2	2	1.00		
Carbon Tetrachloride		ND	3.1		1.00		
Chlorobenzene		ND	2.3	3	1.00		
Chloroethane		ND	1.3	3	1.00		
Chloroform		ND	2.4	ļ	1.00		
Chloromethane		ND	1.0)	1.00		
Dibromochloromethane		ND	4.3	3	1.00		
1,2-Dibromoethane		ND	3.8	3	1.00		
1,2-Dichlorobenzene		ND	3.0)	1.00		
1,3-Dichlorobenzene		ND	3.0)	1.00		
1,4-Dichlorobenzene		ND	3.0)	1.00		
Dichlorodifluoromethane		ND	2.5	5	1.00		
1,1-Dichloroethane		ND	2.0)	1.00		
1,2-Dichloroethane		ND	2.0)	1.00		
1,1-Dichloroethene		ND	2.0)	1.00		
c-1,2-Dichloroethene		ND	2.0)	1.00		
t-1,2-Dichloroethene		ND	2.0		1.00		
1,2-Dichloropropane		ND	2.3	3	1.00		
c-1,3-Dichloropropene		ND	2.3	3	1.00		
t-1,3-Dichloropropene		ND	4.5	5	1.00		
Dichlorotetrafluoroethane		ND	14		1.00		
1,1-Difluoroethane		ND	5.4		1.00		
Ethylbenzene		ND	2.2		1.00		
4-Ethyltoluene		ND	2.5	;	1.00		

Toluene-d8

Analytical Report

AEI Consultants	Da	Date Received: Work Order:					
2207 West 190th Street	Wo						
Torrance, CA 90504-6001	Pre	Preparation:					
	Me	ethod:		EPA TO-15			
	Un	nits:		ug/m3			
Project: 383288				Page 8 of 8			
Parameter	Result	<u>RL</u>	<u>DF</u>	Qualifiers			
Hexachloro-1,3-Butadiene	ND	16	1.00				
2-Hexanone	ND	6.1	1.00				
Isopropanol	ND	12	1.00				
Methyl-t-Butyl Ether (MTBE)	ND	7.2	1.00				
Methylene Chloride	ND	17	1.00				
4-Methyl-2-Pentanone	ND	6.1	1.00				
Styrene	ND	6.4	1.00				
1,1,2,2-Tetrachloroethane	ND	6.9	1.00				
Tetrachloroethene	ND	3.4	1.00				
Toluene	ND	1.9	1.00				
1,1,1-Trichloroethane	ND	2.7	1.00				
1,1,2-Trichloroethane	ND	2.7	1.00				
Trichloroethene	ND	2.7	1.00				
Trichlorofluoromethane	ND	5.6	1.00				
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	11	1.00				
1,2,4-Trimethylbenzene	ND	7.4	1.00				
1,3,5-Trimethylbenzene	ND	2.5	1.00				
Vinyl Acetate	ND	7.0	1.00				
Vinyl Chloride	ND	1.3	1.00				
o-Xylene	ND	2.2	1.00				
p/m-Xylene	ND	8.7	1.00				
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>				
1,4-Bromofluorobenzene	90	68-134					
1,2-Dichloroethane-d4	99	67-133					

96

70-130

01/31/18

18-01-2136

Quality Control - LCS/LCSD

AEI Consultants

2207 West 190th Street

Torrance, CA 90504-6001

Date Received:

Work Order:

Preparation:

Preparation: N/A Method: EPA TO-15

Project: 383288 Page 1 of 2

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
095-01-021-19686	LCS		Air	GC/	MS 000	N/A	02/01/1	18 12:37	180201L01	
095-01-021-19686	LCSD		Air	GC/	MS 000	N/A	02/01/1	18 13:30	180201L01	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
1,2,4-Trichlorobenzene	185.5	229.6	124	237.0	128	31-151	11-171	3	0-30	
Acetone	59.39	61.99	104	62.68	106	67-133	56-144	1	0-30	
Benzene	79.87	84.29	106	84.98	106	70-130	60-140	1	0-30	
Benzyl Chloride	129.4	151.8	117	154.6	119	38-158	18-178	2	0-30	
Bromodichloromethane	167.5	179.2	107	180.5	108	70-130	60-140	1	0-30	
Bromoform	258.4	294.3	114	295.4	114	63-147	49-161	0	0-30	
Bromomethane	97.08	99.88	103	100.6	104	70-139	58-150	1	0-30	
2-Butanone	73.73	79.09	107	79.88	108	66-132	55-143	1	0-30	
n-Butylbenzene	137.2	154.6	113	157.3	115	50-150	33-167	2	0-30	
sec-Butylbenzene	137.2	148.3	108	150.7	110	50-150	33-167	2	0-30	
tert-Butylbenzene	137.2	150.8	110	153.7	112	50-150	33-167	2	0-30	
Carbon Disulfide	77.85	81.88	105	82.28	106	68-146	55-159	0	0-30	
Carbon Tetrachloride	157.3	168.8	107	169.2	108	70-136	59-147	0	0-30	
Chlorobenzene	115.1	127.1	110	128.6	112	70-130	60-140	1	0-30	
Chloroethane	65.96	69.66	106	70.27	107	65-149	51-163	1	0-30	
Chloroform	122.1	128.4	105	129.1	106	70-130	60-140	1	0-30	
Chloromethane	51.63	56.05	109	55.57	108	69-141	57-153	1	0-30	
Dibromochloromethane	213.0	237.3	111	239.4	112	70-138	59-149	1	0-30	
1,2-Dibromoethane	192.1	216.3	113	218.1	114	70-133	60-144	1	0-30	
1,2-Dichlorobenzene	150.3	173.9	116	175.5	117	48-138	33-153	1	0-30	
1,3-Dichlorobenzene	150.3	173.1	115	175.0	116	56-134	43-147	1	0-30	
1,4-Dichlorobenzene	150.3	168.5	112	169.5	113	52-136	38-150	1	0-30	
Dichlorodifluoromethane	123.6	132.7	107	133.5	108	67-139	55-151	1	0-30	
1,1-Dichloroethane	101.2	107.3	106	107.1	106	70-130	60-140	0	0-30	
1,2-Dichloroethane	101.2	108.5	107	108.9	108	70-132	60-142	0	0-30	
1,1-Dichloroethene	99.12	105.3	106	104.8	106	70-135	59-146	0	0-30	
c-1,2-Dichloroethene	99.12	106.8	108	107.4	108	70-130	60-140	1	0-30	
t-1,2-Dichloroethene	99.12	106.9	108	107.3	108	70-130	60-140	0	0-30	
1,2-Dichloropropane	115.5	121.7	105	123.6	107	70-130	60-140	2	0-30	
c-1,3-Dichloropropene	113.5	130.2	115	132.4	117	70-130	60-140	2	0-30	
t-1,3-Dichloropropene	113.5	134.6	119	135.4	119	70-147	57-160	1	0-30	
Dichlorotetrafluoroethane	174.8	190.2	109	190.7	109	51-135	37-149	0	0-30	
1,1-Difluoroethane	67.54	69.29	103	68.71	102	70-131	60-141	1	0-30	
Ethylbenzene	108.6	123.8	114	125.1	115	70-130	60-140	1	0-30	
4-Ethyltoluene	122.9	141.3	115	143.2	117	68-130	58-140	1	0-30	
Hexachloro-1,3-Butadiene	266.6	316.9	119	325.6	122	44-146	27-163	3	0-30	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS/LCSD

 AEI Consultants
 Date Received:
 01/31/18

 2207 West 190th Street
 Work Order:
 18-01-2136

 Torrance, CA 90504-6001
 Preparation:
 N/A

 Method:
 EPA TO-15

Project: 383288 Page 2 of 2

<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Con	ıc. <u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
2-Hexanone	102.4	116.3	114	118.7	116	70-136	59-147	2	0-30	
Isopropanol	61.45	66.37	108	89.52	146	57-135	44-148	30	0-30	ME
Methyl-t-Butyl Ether (MTBE)	90.13	96.13	107	96.85	107	68-130	58-140	1	0-30	
Methylene Chloride	86.84	93.92	108	92.75	107	69-130	59-140	1	0-30	
4-Methyl-2-Pentanone	102.4	112.8	110	114.0	111	70-130	60-140	1	0-30	
Styrene	106.5	119.1	112	120.7	113	65-131	54-142	1	0-30	
1,1,2,2-Tetrachloroethane	171.6	186.1	108	188.3	110	63-130	52-141	1	0-30	
Tetrachloroethene	169.6	189.1	112	190.1	112	70-130	60-140	1	0-30	
Toluene	94.21	102.6	109	103.9	110	70-130	60-140	1	0-30	
1,1,1-Trichloroethane	136.4	146.3	107	147.4	108	70-130	60-140	1	0-30	
1,1,2-Trichloroethane	136.4	146.7	108	148.4	109	70-130	60-140	1	0-30	
Trichloroethene	134.3	145.0	108	146.5	109	70-130	60-140	1	0-30	
Trichlorofluoromethane	140.5	147.7	105	148.2	106	63-141	50-154	0	0-30	
1,1,2-Trichloro-1,2,2- Trifluoroethane	191.6	203.6	106	203.6	106	70-136	59-147	0	0-30	
1,2,4-Trimethylbenzene	122.9	137.7	112	139.5	113	60-132	48-144	1	0-30	
1,3,5-Trimethylbenzene	122.9	139.4	113	141.5	115	62-130	51-141	1	0-30	
Vinyl Acetate	88.03	94.47	107	93.79	107	58-130	46-142	1	0-30	
Vinyl Chloride	63.91	68.94	108	68.58	107	70-134	59-145	1	0-30	
o-Xylene	108.6	118.3	109	119.5	110	69-130	59-140	1	0-30	
p/m-Xylene	217.1	240.5	111	244.6	113	70-132	60-142	2	0-30	

Total number of LCS compounds: 56
Total number of ME compounds: 1
Total number of ME compounds allowed: 3
LCS ME CL validation result: Pass

Summa Canister Vacuum Summary

Work Order: 18-01-2136				Page 1 of 1
Sample Name	Vacuum Out	Vacuum In	Equipment	Description
B-1	-29.90 in Hg	-2.20 in Hg	LC707	Summa Canister 1L
B-3	-29.90 in Hg	-2.40 in Hg	SLC057	Summa Canister 1L
B-4	-29.90 in Hg	-4.20 in Hg	LC338	Summa Canister 1L

Sample Analysis Summary Report

Work Order: 18-01-2136				Page 1 of 1
Method	<u>Extraction</u>	Chemist ID	Instrument	Analytical Location
EPA TO-15	N/A	953	GC/MS OOO	2

Glossary of Terms and Qualifiers

Work Order: 18-01-2136 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The cample extract was subjected to Silica Gol treatment prior to analysis

- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

AIR CHAIN-OF-CUSTODY RECORD

7		
Calscience	WO NOT LAND USE ONLY	DATE: 1/30/18
TOTAL DAVID TO THE		76
7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494 For courier service / sample drop off information, contact us26, sales@eurofinsus.com or call us.		PAGE: 1 OF 1
LABORATORY CLIENT: AEI	CLIENT PROJECT NAME/NO:	P.O. NO.
	2077000	
2207 W 140% ST	PROJECT CONTACT:	LAB CONTACT OR QUOTE NO.:
TORKANCO CA POSOY	LONI VOLMER	
E-M	PROJECT ADDRESS;	SAMPLER(S): (PRINT)
310-798-4255 aggeneralaei (minitants, com	1200 to the land American Roll	Dark.
TURNAROUND TME (Rush surcharges may apply to any TAT not "STANDARD".		202
CISAMEDAY CI24 HR CI48 HR ATZHR CI5 DAYS CISTANDARD	CITY: STATE ZIP	DEVILENTED
EDO: UMITS:	How facility	ALKOESIED
D COELT EDF D OTHER		ANALYSES
SPECIAL INSTRUCTIONS:		

S1-0T

-79			MATRIX	ηÝs	SAMPLING EQUIPMENT	ENT	START 34	START SAMPLING INFORMATION	MATION	9TOP 8	STOP SAMPLING INFORMATION	MATION	s			
4 8 0 8	CHICARA	FIELD ID /	(I) voopul	'nν	Canister	Flow			Canister			Carister)(
, <u>;</u>	ON MALE LEGIS	POINT OF COLLECTION	Soit Vap. (SV)	Media	Size	Controller		Тіте	Pressure		Time	Pressure	21			
			Auribieni (A.)	→ α	6L or 1L	OI /	Dale	(24 hr clock)	(in Hg)	Date	(24 hr clock)	(in Hg)	\			
	B- i		\$	A103	77	40477	0851 81/08/1	1530	-30	81108/1	24 SI 81108/1	₩	×			
N	8-3	* *** *** * * * * * * * * * * * * * *		A308	_	45077	-	1545	-30		1555	'n	×			
n	8-4		ب	A128	→	16.38 Su	٤	0 031	Q\$-	→	1610	- 5	×			
						•	-									
									d the second the second to the							
Relinquist	Relinquished by: (Signature)	A CONTRACTOR OF THE PARTY OF TH			Received by:	Received by: (Signature/Affiliation)	ation)	\ \			Date	Date: //2//12	<u>-</u>	Time:	Ļ	ge 1
Relinguish	Relinquished by: (Signature)				Received by:	Received by: (Signature/Affiliation	Zione Biographical				Date	7///	+	Time:	,	
						,							•			
Retinquish	Relinquished by: (Signature)				Кесемед бу:	Received by: (Signature/Affiliation)	ation)				Date		-	Time:		
											***************************************		-			1

2014-07-01 Revision

Calscience

WORK ORDER NUMBER: 18-01-01-136

SAMPLE RECEIPT CHECKLIST

COOLER 0 OF 0

CLIENT: AET DATE	≣: <u>01 /[⊴]</u>	³ / / 2018
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: +0.2°C); Temperature (w/o CF):°C (w/ CF):°C; Sample(s) outside temperature criteria (PM/APM contacted by:) Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling	□ Blank	□ Sample
☐ Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: ☐ Air ☐ Filter	Checked	by: <u>46</u>
CUSTODY SEAL:		£.
Cooler ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A Sample(s) ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A	Checked Checked	by: 346
SAMPLE CONDITION:	Yes	No N/A
Chain-of-Custody (COC) document(s) received with samples	ø,	
COC document(s) received complete	9	
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers		:
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquished time		
Sampler's name indicated on COC	_	
Sample container label(s) consistent with COC	12/	
Sample container(s) intact and in good condition		
Proper containers for analyses requested		
Sufficient volume/mass for analyses requested	Ø	
Samples received within holding time	Ø	
Aqueous samples for certain analyses received within 15-minute holding time		
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen		
Proper preservation chemical(s) noted on COC and/or sample container		
Unpreserved aqueous sample(s) received for certain analyses		
☐ Volatile Organics ☐ Total Metals ☐ Dissolved Metals		_
Acid/base preserved samples - pH within acceptable range	. 🗆	
Container(s) for certain analysis free of headspace	. 🗆	
☐ Volatile Organics ☐ Dissolved Gases (RSK-175) ☐ Dissolved Oxygen (SM 4500)		
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)		
Tedlar™ bag(s) free of condensation		
CONTAINER TYPE: (Trip Blank Lot Number	er:)
Aqueous: 🗆 VOA 🗆 VOAh 🗀 VOAna2 🗀 100PJ 🗀 100PJna2 🗀 125AGB 🗀 125AGBh 🗀 125AGBp 🗀 125P 🗆 250AGB 🗀 250CGB 🗀 250CGBs (pH2) 🗀 250PB 🗀 250PBn (pH2) 🗀 500AGB 🗀 500AGJ 🗀 500AG 🗆 1AGB 🗆 1AGBna2 🗀 1AGBs (pH2) 🗀 1AGBs (O&G) 🗀 1PB 🗀 1PBna (pH12) 🗂 🗓	3Js (pH2)	□ 500PB
Solid: 🛮 4ozCGJ 🗘 6ozCGJ 🚨 16ozCGJ 🚨 Sleeve () 🚨 EnCores® () 🗖 TerraCores® () 🗓		
Air: ☐ Tedlar™	.	□
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Res		
Preservative: $b = buffered$, $f = filtered$, $h = HCl$, $n = HNO_3$, $na = NaOH$, $na_2 = Na_2S_2O_3$, $p = H_3PO_4$. Labele		A /